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Abstract—This study presents a malware classification system
designed to classify malicious processes at run-time on production
hosts. The system monitors process-level system call activity and
uses information extracted from system call traces as inputs to
the classifier. The system is advantageous because it does not
require the use of specialized analysis environments. Instead,
a ‘lightweight’ service application monitors process execution
and classifies new malware samples based on their behavioral
similarity to known malware. This study compares the effec-
tiveness of multiple feature sets, ground truth labeling schemes,
and machine learning algorithms for malware classification. The
accuracy of the classification system is evaluated against process-
level system call traces of recently discovered malware samples
collected from production environments. Experimental results
indicate that accurate classification results can be achieved using
relatively short system call traces and simple representations.

I. INTRODUCTION

Automatic classification techniques are used to characterize
newly discovered malware samples, with goals of generating
mitigation procedures, remediation procedures, and detection
signatures. Such techniques typically involve executing sam-
ples in a sandbox environment to observe their behaviors.
These environments provide reports that include informa-
tion about filesystem, registry, memory, library, and system
call activities [1], [2]. Executing malware samples in such
environments is a resource-intensive process, presenting a
formidable challenge for antivirus (AV) vendors who seek
to analyze every new malware sample. One vendor estimates
that more than 6 new malware samples are discovered every
second, a pace that is projected to increase through the end of
2015 [3]. Among such newly discovered malware samples are
new malware families and new variants of existing malware
families. Malware authors use specialized tools to generate
new malware variants, with the intentions of overwhelming
AV vendors and evading analysis [4]. Some malware samples
are specifically crafted to alter themselves as they propagate,
automatically creating new variants [5], [6].

Suspected malware samples are typically submitted to AV
vendors during postmortem analysis, after they have been
discovered on an infected host. The goal of this study is to
leverage data collected from infected hosts to facilitate mal-
ware analysis. To this end, the described malware classification
includes a ‘lightweight’ host-agent that automatically monitors

the system call traces of every process executing on a host. A
system call is a request for an operating system service, and a
system call trace provides a listing of the system calls in the
order in which they occur. The described system uses features
extracted from system call traces to determine a suspected
malware sample’s behavioral similarity to known malware.
This system is advantageous because it provides immediate
classification results that can be used to guide postmortem
analysis, mitigation, and remediation. It is intended to be
used in conjunction with behavioral detection systems that use
similar feature sets to infer malicious behaviors [7].

The contributions of this study are three-fold. First, this
study considers multiple feature sets and classification algo-
rithms that have previously been demonstrated to be useful
for malware classification. These techniques are applied to
system call traces collected from the execution of more than
76,000 distinct malware samples. The system call traces were
collected on hosts running multiple versions of Microsoft Win-
dows. Second, this study compares the effectiveness of various
ground truth labeling schemes derived from AV naming sys-
tems. The experimental results identify which ground truth
labels provide the highest classification accuracy. Finally, this
study presents the design of a run-time malware classification
system, with algorithms and parameters selected based on
experimental evaluation.

II. RELATED WORK

The related work in automatic malware classification de-
scribes both static and dynamic analysis techniques. Static
analysis techniques use features extracted from executable
files, while dynamic analysis techniques use observed char-
acteristics of executing malware. A large portion of related
work in malware classification focuses primarily on systems
designed for off-line analysis.

Feature sets commonly used for static analysis include
strings, byte sequences, and program structure [8]–[10]; API
imports and API calls [11]; and control flow information [12]–
[14]. Commonly used classification algorithms include naı̈ve
Bayes, decision trees, support vector machines (SVMs) [8],
[10], image classification techniques [9], hierarchical cluster-
ing analysis [11], and graph matching and clustering algo-
rithms [12]–[14].



Dynamic analysis techniques typically require malware
samples to be executed in a sandbox environment. Nearest
neighbor techniques have been used to classify malware based
on the reports collected from such environments [2], [15]–
[17]. Alternate algorithms have also been explored, including
naı̈ve Bayes, SVMs, decision trees, and neural networks [16].
Hierarchical clustering analysis based on file, registry, and pro-
cess activity has also provided promising results [18]. Nearest
neighbor techniques have demonstrated success using system
call traces extracted using cwsandbox [19], [20]. Clustering
algorithms have been successful in classifying malware based
on activities derived from system call traces [21]. Two recent
studies leverage the strengths of static analysis (ease of feature
extraction) and dynamic analysis (richness of datasets) to
provide improved classification results [22], [23]. Dynamic
analysis has also been applied to specific malware subsets,
including malware that communicate over a network [24], [25]
and rootkits that use API hooks [26]. This study focuses on
dynamic analyisis – particularly, system call analysis – but
differs from the related work in that it performs classification
on-line on production hosts without the use of any specialized
sandbox environments.

III. FEATURE EXTRACTION FROM SYSTEM CALL TRACES

The system call traces used in this study were collected
using a custom host-agent known as the System Call Service
(SCS)1. The SCS is a service application that collects system
call traces from running processes. For this study, system
call traces are represented as vectors of system call n-gram
frequencies. This representation is referred to as the bag-of-
system-call-n-grams representation, adapted from the bag-of-
words representation popular in document classification and
intrusion detection [27]. A system call n-gram is a sequence
of n contiguous system calls appearing in a trace. The feature
vectors are stored as TF-IDF transformed vectors of n-gram
frequencies, where TF-IDF transformation is used to account
for the fact that system call n-gram frequencies scale to
different orders of magnitude. Given a vector of x of raw
frequencies, the TF-IDF transformation considers the term
frequency (TF) as the logarithmic frequency,

TF(x) = log(x + 1) . (1)

The inverse document transformation (IDF) applies weights to
features inversely according to their frequency of appearance.
Considering p to be the number of traces in a set X and d to
be a vector counting the traces in which each n-gram appears,
the IDF is

IDF(X ) = log

(
1 + p

1 + d

)
+ 1 . (2)

The overall TF-IDF transformation is the element-wise product
of the TF and the IDF, represented as x̂.

The feature space of the bag-of-system-call-n-grams repre-
sentation has 465n dimensions, because there are 465 distinct
system calls tracked by the SCS. Since certain classification

1SCS source code: https://github.com/rcanzanese/SystemCallService

algorithms presented in this work perform poorly with very
high-dimensional data (due to the so-called ‘curse of dimen-
sionality’ [28]), this work considers two dimension reduction
techniques. The first, truncated singular value decomposition
(SVD), is a matrix factorization algorithm used to project the
features onto a lower dimensional feature space [29]. The SVD
defines a transformation of a vector from its original repre-
sentation x̂, to a new representation x̂k in a k-dimensional
space. The parameters of the transformation, Σk and UT

k , are
selected to project the data onto a space defined by the k
largest eigenvalues of X̂X̂T , where X̂ is a matrix formed by
concatenating the set of training vectors. The transformation
is

x̂k = ΣkU
T
k x̂ . (3)

The second transformation, linear discriminant analysis
(LDA), is a generalization of Fisher’s Linear Discrimi-
nant [28]. Whereas SVD transforms the feature data to
eliminate redundancy, LDA considers the class labels and
transforms the data to separate the instances of different
classes. Given data from K classes, LDA is used to project
the data onto a (K− 1)-dimensional space. LDA assumes the
class-conditional distribution of the features to be Gaussian
and requires non-redundant input features. Therefore, LDA is
only applied to the SVD-transformed feature vectors xk. LDA
seeks a matrix W to maximize the between-class covariance
and minimize with within-class covariance of the data in the
projected space. The projection is given by

x̂K−1 = W x̂k . (4)

For simplicity of representation, x̂ is used in the remainder of
this work to refer to the output of the TF-IDF, SVD, and LDA
transformations.

IV. MALWARE CLASSIFICATION ALGORITHMS

The classification techniques considered for this study are
used in a supervised learning context, wherein the classifi-
cation models are learned from labeled training data. Each
technique includes a training and testing algorithm. The tech-
niques were selected because of their previously demonstrated
effectiveness in intrusion detection and malware classification.

A. Multi-class logistic regression (LR)

LR is a linear classifier that provides a model for computing
the probability that a malware samples belongs to a specific
class [30]. The LR classifier is desirable because of its com-
putational simplicity during testing and its efficient training
process. This study uses a one-versus-all (OVA) approach,
which treats the K-class classification problem as a collection
of binary detection problems [31]. Each detector is trained to
differentiate between the malware belonging to a class Ck and
malware belonging to all other classes Ck̄. The detectors model
the probability that a process with feature vector x̂ comes from
a malware sample of class Ck as

pCk(x̂) =
1

1 + e−(wT x̂)
, (5)



and the probability that it comes from some other class as

pCk̄(x̂) = 1− pCk(x̂) . (6)

The OVA algorithm selects the most likely class Ĉk as

Ĉk = arg max
Ck

log

(
pCk(x̂)

pCk̄(x̂)

)
. (7)

The parameter w in the preceding expressions is determined
through minimization of a function that penalizes misclassifi-
cation and high model complexity,

E(w) =
1

p

p∑
i=1

L(yi,w
Txi) + α||w||2 . (8)

where
L(t, y) = log (1 + exp (−ty)) . (9)

B. Naı̈ve Bayes

The naı̈ve Bayes algorithm is a log-likelihood ratio test that
assumes conditional independence of the features and bases its
detection thresholds on error costs and prior probabilities [32].
Given the prior probabilities P (Ck) and likelihoods P (x̂|Ck),
the naı̈ve Bayes classifier computes the most likely class label
Ĉk of a feature vector x̂ as the class with the highest posterior
probability,

Ĉk = arg max
Ck

P (Ck)× P (x̂|Ck) . (10)

For this study, the prior probabilities are estimated from
the training data. The likelihoods are parameterized using a
multinomial distribution model for the TF-IDF data and a
Gaussian distribution model for the SVD and LDA data.

C. Random forests

The random forest algorithm is advantageous for its white
box model and its ability to realize complicated decision
surfaces. It uses a collection of binary decision trees for
classification. A decision tree comprises of a set of nodes
and edges. The interior nodes correspond to simple threshold
tests. During classification, the tree is traversed by evaluating
the threshold tests. The traversal ends at a leaf node, which
indicates the predicted malware class Ĉk. The random forest
classifier uses a collection of binary decision trees and selects
the majority output of the component trees as its output [33].
Random forests are used because decision trees alone tend to
overfit the training data.

This study uses the classification and regression trees
(CART) algorithm for training [34]. The CART algorithm
builds the decision trees recursively, starting at the root node
of the tree. It begins by considering all of the malware samples
and their corresponding labels and feature vectors x̂. The
CART algorithm seeks the feature and threshold test that cause
similar malware samples to be grouped together after the split.
The algorithm terminates based on tunable parameters that
determine the complexity of the tree. The trees in the forest
are randomized by considering a randomly selected subset of
the available features at each node.

D. Nearest neighbors

The k-nearest neighbors classifier uses the entire training
set X as its model [28]. The classifier identifies the vectors in
the training set nearest to a test vector x̂. These vectors are
considered its nearest neighbors. The output of the classifier is
the class with the highest representation in the set of nearest
neighbors. The nearest neighbor classifier is advantageous
because of its simplicity and because it can realize complicated
decision surfaces.

E. Nearest centroid

The nearest centroid classifier models each malware class
as its centroid, i.e., the average of its feature vectors [35]. The
output of the classifier is the class label of the centroid nearest
to the vector. The nearest centroid classifier is advantageous
because of its lower model and computational complexity
compared to the nearest neighbor classifier. The classifier
assumes convexity of its classes and equal variance along all
dimensions. Therefore, it performs poorly when the data points
within the classes do not form non-overlapping convex sets or
when the feature variances differ significantly.

V. MALWARE CLASSIFIER EVALUATION

The effectiveness of the classifiers described in the previous
section is measured in terms of precision, recall, and F1 score.
These three quantities are computed on a per-class basis. The
precision for a class Ck is the fraction of processes classified
as Ck that belong to Ck,

PrecisionCk =
TPCk

TPCk + FPCk
. (11)

TPCk and FPCk are the numbers of true positives and
false positives reported by the classifier, i.e., the number of
processes correctly and incorrectly classified as belonging
to Ck. The precision measures the relevance of the positive
classifications. A precision of 1 indicates that the classifier
is always correct when it classifies a process as belonging to
class Ck, whereas a precision of 0 indicates it is never correct
when it does so.

The recall of a class Ck is the fraction of the processes
belonging to Ck in the ground truth that are correctly classified,

RecallCk =
TPCk

TPCk + FNCk
. (12)

FNCk is the number of false negatives, i.e., the number of
instances of Ck misclassified as belonging to another class.
The recall measures the sensitivity of the classifier. A recall of
1 indicates that a classifier correctly identifies every instance
of class Ck, whereas a recall of 0 indicates that a classifier
never correctly identifies instances of Ck.

The F1 score of a class Ck is the harmonic mean of
the precision and recall of that class. An F1 score of 0
indicates 0 recall or 0 precision, whereas an F1 score of 1
indicates perfect recall and precision. In this study, per-class
F1 scores are averaged over all the classes to provide an overall
characterization of a classifier. Three averaging techniques are



considered to account for the unbalanced representation of the
malware classes used in this study.

Micro-averaged F1 score:
The F1 score computed from the aggregate set, char-
acterizing classifier performance on large classes.

Macro-averaged F1 score:
The average of the F1 scores of the classes, charac-
terizing classifier performance on small classes.

Weighted F1 score:
The weighted average of the F1 scores of the classes,
with weights proportional to heir support in the
ground truth.

VI. EXPERIMENTAL RESULTS

This section presents experimental results achieved using
the previously described feature extraction, classification, and
evaluation techniques. The results were obtained through 10-
fold cross-validation performed on a set of 125,000 malware
processes collected from the execution of more than 76,000
distinct malware samples. To characterize the performance of
the classifier against new malware families and variants, cross-
validation was performed using disjoint sets of malware sam-
ples. The malware samples were collected from honeypots, by
crawling blacklists, and from publicly available malware col-
lections. The samples were first seen by VirusTotal2 between
January 2012 and June 2015 and identified as malicious by
at least 15 AV vendors. The malware samples were executed
on a purpose-built malware testbed which consisted of 19
hosts running 32 and 64-bit versions of Microsoft Windows
7, 8.1, and Server 2012 R2. The specific configurations of
the hosts varied (e.g., installed software, level of applied
patches). To allow malware to communicate over a network,
the testbed included a DNS server and routed outgoing traffic
to a Dionaea3 honeypot. The honeypot provided a vulnerable
host for malware to infect and a remote server for malware to
send data. Data collected by the honeypot included malware
payloads, host information, and private data transmitted by the
malware samples executed on the testbed. Although presented
here serially, the experimental results were obtained through a
process of successive refinement of strategies and parameters.

A. Ground truth comparison

The lack of a universal malware naming scheme and the
incompleteness and inconsistency of existing naming schemes
complicate the problem of automatic malware classifica-
tion [18]. These challenges raise the question: What are the
relevant malware classes against which a classifier should be
evaluated? This section presents a study of the accuracy of
the LR classifier against 27 ground truth labeling schemes
derived from 16 AV vendors’ labels. The ground truth labeling
schemes are listed in Table I, identified by the AV labels from
which they are derived and whether they are malware category
or family labels. Category labels define the general function or

2VirusTotal, http://www.virustotal.com
3Dionaea low-interaction honeypot, http://dionaea.carnivore.it

TABLE I
LR CLASSIFIER F1 SCORES FOR VARIOUS GROUND TRUTH LABELING

SYSTEMS

vendor type classes micro macro weighted
AntiVir category 17 0.79 0.45 0.79
Microsoft category 20 0.74 0.52 0.75
DrWeb category 12 0.72 0.3 0.75
Microsoft family 315 0.7 0.53 0.71
Vipre category 47 0.68 0.43 0.71
ESETNOD32 family 301 0.67 0.5 0.68
Panda category 19 0.65 0.43 0.68
Avast category 12 0.64 0.42 0.66
K7AntiVirus category 16 0.64 0.45 0.65
DrWeb family 241 0.57 0.46 0.59
Kaspersky category 34 0.57 0.45 0.58
Symantec category 24 0.56 0.39 0.58
FSecure category 49 0.54 0.42 0.57
Vipre family 220 0.54 0.41 0.57
GData category 30 0.55 0.28 0.57
AntiVir family 154 0.54 0.41 0.56
Ikarus category 46 0.54 0.37 0.56
McAfee family 125 0.52 0.44 0.53
Panda family 111 0.51 0.43 0.53
Ikarus family 442 0.5 0.38 0.5
Kaspersky family 290 0.49 0.4 0.49
FSecure family 175 0.47 0.35 0.48
Emsisoft category 73 0.43 0.2 0.48
Avast family 220 0.46 0.37 0.47
TrendMicro family 227 0.47 0.4 0.46
GData family 261 0.42 0.35 0.43
Emsisoft family 293 0.41 0.29 0.43

delivery mechanism of a malware sample and include labels
such as Trojan horse, worm, and virus. Family labels define
specific function, heritage, or shared authorship and include
labels such as Zbot, Kelihos, and MyDoom. For each ground
truth labeling scheme, Table I lists the number of distinct
classes included in the evaluation and the average F1 scores of
the classifier. For each labeling scheme, only malware samples
positively identified as malicious by the corresponding AV
vendor were considered. Furthermore, only classes containing
at least 10 distinct malware samples were considered to ensure
meaningful cross-validation results. Samples were considered
distinct if their SHA1 hashes differed. The classification results
were obtained using TF-IDF feature extraction, system call 3-
grams, a trace length of 1500 calls, and the LR classifier.

The results in Table I provide two useful insights. First, the
macro-averaged F1 scores are consistently low, indicating the
classifiers perform poorly against small classes regardless of
the chosen ground truth labels. Second, the micro-averaged
and weighted F1 scores vary significantly based on the chosen
ground truth labels. This indicates that certain ground truth
labeling schemes describe malware based on their system call
3-gram frequencies better than others. The highest performing
categorical labels were those derived from the AntiVir and
Microsoft labels, while the highest performing family labels
were those derived from the ESET and Microsoft labels. These
four labeling schemes are the focus of the remainder of the
presented results.



TABLE II
CLASSIFIER AND FEATURE EXTRACTION STRATEGY COMPARISON

detector feature extraction F1 (micro) F1 (macro) F1 (weighted)
LR TF-IDF 0.71 0.54 0.70
LR TF-IDF, SVD 0.53 0.25 0.53
LR TF-IDF, SVD, LDA 0.56 0.34 0.56
nearest centroid TF-IDF, SVD 0.15 0.07 0.19
nearest centroid TF-IDF, SVD, LDA 0.39 0.20 0.42
nearest neighbor TF-IDF, SVD 0.69 0.44 0.67
nearest neighbor TF-IDF, SVD, LDA 0.69 0.45 0.67
random forests TF-IDF, SVD 0.69 0.49 0.67
random forests TF-IDF, SVD, LDA 0.69 0.47 0.67
multinomial naı̈ve Bayes TF-IDF 0.41 0.05 0.33
Gaussian naı̈ve Bayes TF-IDF, SVD 0.35 0.21 0.39
Gaussian naı̈ve Bayes TF-IDF, SVD, LDA 0.47 0.31 0.50

B. Classifier comparison

This section compares the accuracy of the five classifiers
described in Section IV using three feature extraction strate-
gies.

TF-IDF:
Uses the TF-IDF feature extraction strategy.

TF-IDF, SVD:
Combines TF-IDF with SVD, projecting the TF-IDF
features onto their first 250 singular values.

TF-IDF, SVD, LDA:
Combines the previous strategy with LDA, projecting
the SVD transformed features onto K − 1 features.

To facilitate analysis, each of the transformed feature vectors
is scaled to unit magnitude using the L2 norm. Only the
LR classifier is evaluated using all three feature extraction
strategies. The nearest centroid, nearest neighbor, and decision
tree classifiers are not evaluated against the TF-IDF features
because of the high dimensionality of the data and the com-
putational complexity of the algorithms. The multinomial and
Gaussian naı̈ve Bayes classifiers are restricted only to the
feature sets that can be described by their models. Therefore,
the former uses only the TF-IDF data and the latter uses only
the SVD and LDA transformed feature data.

Table II summarizes the performance of each classifier and
feature extraction strategy combination in terms of its average
F1 scores. The results were obtained using system call 3-grams
and traces of length 1500. The worst performing classifiers
were naı̈ve Bayes and nearest centroid. The naı̈ve Bayes
classifier performed poorly because the assumed conditional
independence and probability models were inaccurate and
tended to overfit the training data. The nearest centroid clas-
sifier performed poorly because the feature data did not form
non-overlapping convex sets. The nearest centroid detector’s
performance improved (but still under-performed the others)
when LDA was used because the transformed data had higher
separation between classes.

The nearest neighbors and random forest classifiers pro-
vided nearly identical performance, regardless of whether LDA
was used. This is largely due to the complex decision surfaces
these classifiers are able to realize. The high accuracy of

the nearest neighbor classifier underscores the weakness of
its counterpart, the nearest centroid classifier. Although the
two use similar distance metric-based algorithms, the simplis-
tic model and convexity assumption of the nearest centroid
classifier causes its poor performance.

The LR classifier performed similarly to the nearest neigh-
bors and random forest classifiers, providing slightly higher F1

scores. However, the LR performance degraded significantly
when the feature reduction techniques SVD and LDA were
used. The comparatively poor performance of the LR classifier
with feature reduction indicates that the feature data are
generally linearly separable in the original feature space, but
not so in the reduced feature space.

For a production deployment of the classification system,
the LR classifier is preferred to the random forest and nearest
neighbor algorithms. The LR classifier provides lower training
complexity than the random forest classifier and provides an
efficient mechanism for re-training the models as new malware
samples are discovered. The LR classifier also provides a lower
model storage and testing complexity than the nearest neighbor
classifier.

C. n-gram length

The results presented in the preceding sections assumed
an n-gram length of n = 3. This section considers the
LR classifier and a trace length of 1500 system calls for
n ∈ {1, 2, 3, 4, 5}. Fig. 1 shows the weighted F1 scores
achieved by the classifier for the four highest-performing
ground truth labeling systems versus the n-gram length. The
error bars indicate the standard error of the mean over the 10
cross-validation folds. Classifier accuracy generally improves
with increasing n. In particular, there is a large increase in
performance moving from n = 1 to n = 2. This indicates
that frequency information about system calls (i.e., 1-grams)
alone is insufficient for classification. The comparatively high
accuracy achieved using the AntiVir labels is largely an
artifact of the label distribution: The vast majority of the
malware samples belong to a single category. The marginal
improvement in performance decreases as n-increases, with
n = 5 providing no significant improvement over n = 4. In a
production deployment, using the smallest n-gram length that
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Fig. 1. Weighted F1 score vs. n-gram length for LR classifier and trace
length of 1500 system calls

provides sufficient classification results is desirable to limit the
memory and computational overhead associated with storing
and processing the feature vectors.

D. Trace length

This section fixes the n-gram length at n = 3 and explores
the effect of trace length on classification accuracy. The trace
length is the number of system calls observed from the
beginning of the execution of a process. Fig. 2 shows the
weighted F1 score of the LR classifier versus trace length.
Performance improves as the trace length increases due to the
additional information provided by the longer traces. However,
using longer trace lengths is not always desirable or possible.
First, a longer trace length requires that the malware execute
for longer, causing potentially adverse effects. Second, many
of the malware processes considered in this study were short-
lived, making analysis at longer trace lengths impossible.

At a trace length of 1500, the average execution time
of the studied processes was 205 ms. This result indicates
that high classification accuracy was achievable during the
initial execution of the malware samples. The behaviors of
the malware samples during their initial execution included
modification of host configurations to hide the presence of
the malware, collection of information about the host, com-
munication with remote servers, creation of new processes,
and propagation within a host and over the network. This
study primarily considers trace lengths of 1500 because of
the diminishing returns in classification accuracy achieved by
further increasing the trace length.

E. Category-level classification results

The preceding sections characterized aggregate classifier
performance in terms of average F1 scores. This section
provides analysis of per-category accuracy of the LR classifier
using the Microsoft category labels for n = 3 and trace lengths
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Fig. 2. Weighted F1 score vs. trace length for LR classifier and n = 3

of 1500. The experimental results are presented in terms
of the classifier’s confusion matrix. The confusion matrix is
a K × K matrix, wherein the rows represent the ground
truth labels and the columns represent the classifier outputs.
Traditionally, the entries of a confusion matrix are the number
of instances of the row class assigned to the column class by
the classifier. The diagonal entries indicate correctly classified
instances, while the non-diagonal entries indicate incorrectly
classified instances. Fig. 3 shows the confusion matrix for the
LR classifier using the Microsoft family labels. Since the
classes are not balanced, the entries of the matrix display the
percentage of the row class assigned to the column class by
the classifier. For example, more than 90% of the worms were
correctly classified as worms, whereas less than 10% of the
spammers were correctly classified spammers. The categories
with the highest classification accuracy included backdoors,
distributed denial of service (DDoS) tools, dialers, exploits,
password stealers (PWS), rogue AV software, viruses, and
worms.

The confusion matrix shows two dark vertical lines in
the backdoor and Trojan columns, indicating that many mal-
ware samples from multiple categories were misclassified
as backdoors and Trojans. The backdoor misclassifications
were caused primarily by malware samples in other classes
providing backdoor-like functionality. Conversely, the Trojan
misclassifications were caused primarily by the abundance of
Trojans in the training set and the wide variety of functions
they exhibited. The Trojan family included many different
types of malware grouped together because of their common
delivery mechanism, rather than any specific malicious func-
tionality they provided. As such, the Trojans used in this study
provided functions that overlapped with the majority of the
other malware classes, causing the misclassifications.

The categories with the lowest accuracy included soft-
ware bundlers, spammers, and monitoring tools. The software
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Fig. 3. Classifier confusion matrix for Microsoft category ground truth labels,
showing the fraction of samples in each class indicated by the row labels
classified as the column labels

bundler samples were most often misclassified as various
types of Trojans. This is likely due to the similarity between
Trojans and software bundlers, which are legitimate software
that also install malware. The misclassifications can also be
attributed to the fact that Trojans vastly outnumbered software
bundlers in the malware set. Spammers are used primarily
to send unwanted email messages. Here, their relatively poor
performance is caused by their low representation and the
fact that many other malware samples provided spammer-
like functions. Monitoring tools are commercial programs
that monitor computer usage, and can include keyloggers and
password stealers. Monitoring tools are similar to Trojans
and Trojan Droppers, because they typically are bundled with
and installed alongside other software, and are similar to
spyware because they transmit collected data over the network.
Overall, the results presented in Fig. 3 indicate that overlapping
malware functionality and broadly-defined malware families
are the primary cause of category-level misclassifications.

F. Family-level classification results

This section characterizes the performance of the LR classi-
fier using the Microsoft family labels. Here, the experimental
results are presented in terms of the classification performance
achieved for each of the individual malware categories in
the ground truth. The results presented in Table III show the
precision, recall, F1 score, and number of instances of the
20 malware families with the highest and lowest F1 scores.
Among the best-performing families are those with thousands
of instances, whereas the poorest performers have at most 68
instances. These results are consistent with those presented
in Section VI-B, which indicated that the classifier performs
better for classes with many instances.

TABLE III
PER-FAMILY CLASSIFIER PRECISION, RECALL, AND F1 SCORES FOR THE

MALWARE FAMILIES WITH THE HIGHEST AND LOWEST F1 SCORES

Family Precision Recall F1 score Instances
Trojan.Jeefo 1.00 1.00 1.00 14
Trojan.Recal 1.00 1.00 1.00 280
TrojanDownloader.Drstwex 1.00 1.00 1.00 31
TrojanDropper.Loring 0.99 1.00 1.00 1028
Virus.Elkern 1.00 1.00 1.00 18
Virus.Nabucur 1.00 1.00 1.00 1061
Worm.Fesber 0.99 1.00 1.00 575
Worm.Klez 1.00 0.99 1.00 148
Backdoor.Wabot 0.98 1.00 0.99 272
TrojanDownloader.Ogimant 0.99 0.99 0.99 1070
Worm.Benjamin 0.97 1.00 0.99 33
Worm.Mydoom 0.99 1.00 0.99 1685
Backdoor.Ppdoor 0.96 1.00 0.98 23
Trojan.Phishbank 0.98 0.99 0.98 212
TrojanDownloader.Seimon 0.95 1.00 0.98 79
Virus.Madang 0.97 0.99 0.98 244
Worm.Soltern 0.96 1.00 0.98 44
Backdoor.Berbew 0.97 0.97 0.97 33
Worm.Dumpy 0.94 1.00 0.97 16
Backdoor.Caphaw 0.96 0.96 0.96 27
...
Trojan.Meredrop 0.02 0.03 0.02 68
TrojanSpy.Crime 0.02 0.03 0.02 38
HackTool.Keygen 0.00 0.00 0.00 19
Trojan.Alureon 0.00 0.00 0.00 11
Trojan.Danglo!gmb 0.00 0.00 0.00 21
Trojan.Ircbrute!gmb 0.00 0.00 0.00 22
Trojan.Msposer 0.00 0.00 0.00 54
Trojan.Orsam!rts 0.00 0.00 0.00 35
Trojan.Rimod 0.00 0.00 0.00 16
Trojan.Sisproc 0.00 0.00 0.00 41
Trojan.Sisron!gmb 0.00 0.00 0.00 44
Trojan.Trafog!rts 0.00 0.00 0.00 15
Trojan.Yakad 0.00 0.00 0.00 20
TrojanDownloader.Delf 0.00 0.00 0.00 15
TrojanDownloader.Ranos 0.00 0.00 0.00 26
TrojanProxy.Banker 0.00 0.00 0.00 13
TrojanSpy.Delf 0.00 0.00 0.00 16
VirTool.Vtub 0.00 0.00 0.00 36
Worm.Jenxcus 0.00 0.00 0.00 21
Worm.Sohanad 0.00 0.00 0.00 11

Generally, the best performing families were those from
narrowly defined malware categories, such as viruses, worms,
and backdoors. Conversely, the worst performing families were
those from more broadly defined categories, particularly Tro-
jans. Furthermore, some of the poorly performing families are
also broadly defined. For example, Gandlo!gmb, Ircbrute!gmb,
and Sisron!gmb are all generically-defined Trojans. In contrast,
the highest performing families are typically very narrowly
defined. For example, Klez and MyDoom, are well studied
families whose samples perform specific functions and have a
shared heritage.

One way to account for varying class sizes when training
a classifier is to apply weights to the classes inversely based
on their representation in the training set. Rare classes are
oversampled to even the class distributions and ensure that
the classifier is not biased toward classes with higher rep-
resentation. For comparison, the weighted LR classifier was



compared to the unweighted LR classifier. The two versions
provided nearly identical results, indicating that class size was
not inherently biasing the classifier. Rather, the low precision
and recall of the worst-performing classes in Table III were
likely caused by broadly defined malware families and a lack
of enough samples to accurately characterize the families.

VII. DISCUSSIONS AND CONCLUSIONS

This study explored the use of multiple classification algo-
rithms, feature extraction strategies, and ground truth labeling
schemes for malware classification. Through experimental
evaluation, it demonstrated that decision tree, nearest neighbor,
and LR classifiers outperformed naı̈ve Bayes and nearest
centroid classifiers. Since the goal of this study was to identify
those techniques best suited for production deployment, the
LR classifier was selected for its comparatively low model
and computational complexities. The ESET and Microsoft
family labels were selected because they afforded the highest
classification accuracy. The classifier performed best against
well-defined malware families and worst against broadly de-
fined malware families and categories. The described malware
classification system is intended for production systems, where
system call trace data collected from executing processes can
be used to classify newly discovered malware according to
their behavioral similarity to known malware.
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