
Run-time Classification of Malicious Processes
Using System Call Analysis

Ray Canzanese
Dept. of Electrical and Computer Engineering

Drexel University
rcanzanese@gmail.com

Spiros Mancoridis
College of Computing and Informatics

Drexel University
mancors@drexel.edu

Moshe Kam
Newark College of Engineering

New Jersey Institute of Technology
kam@njit.edu

Malcon 2015
20-23 October

Fajardo, Puerto Rico

mailto:rcanzanese@gmail.com
mailto:mancors@drexel.edu
mailto:kam@njit.edu


Acknowledgments

The KEYSPOT Network

People’s Emergency Center

Dornsife Center for Neighborhood Partnerships

The City of Philadelphia Mayor’s Commission on Literacy

The City of Philadelphia Office of Innovation and Technology (OIT)

The City of Philadelphia Department of Parks and Recreation (PPR)

Secure and Trustworthy Cyberspace (SaTC) award from the National
Science Foundation (NSF) – grant CNS-1228847

The Isaac L. Auerbach endowed chair for Spiros Mancoridis



Setting

Malware classification results are useful for generating
I Mitigation procedures
I Remediation procedures
I Detection signatures

Classification using sandbox environments is resource-intensive

Malware authors generate variant floods to overwhelm analysts

Analysts struggle to keep up with influx of new samples

We seek a classification system that
Leverages endpoint monitoring
Provides immediate classification results



Previous work

Related work
Use static and dynamic analysis to classify malware samples1 2

Use sandbox environments for off-line analysis
Leverage various datasets

I Program structure, resources
I File, registry, network, system call activity

Our approach
Uses dynamic analysis (system call sequences)
Focuses on on-line analysis

I Uses endpoint monitoring for feature extraction
I Does not require specialized sandbox environments
I Can provide immediate classification results

1Neugschwandtner, “Forecast: skimming off the malware cream,” 2011.
2Anderson, “Improving malware classification: bridging the static/dynamic gap,” 2012.



Hypothesis

Classify malware by
Monitoring system call activity on endpoints

Extracting a concise feature representation of the traces

Comparing observed patterns to those of known malware

Advantages
Monitoring and extraction are low-overhead
Classification results can be obtained at run-time
Can be easily paired with static analysis techniques
Availablility of results facilitates analysis



Impact and broader contributions

Feature extraction and classification algorithm comparison
I 3 feature extraction strategies
I 6 machine learning algorithms
I Analysis of trace length and n-gram length

Ground truth labeling system comparison
I 27 naming schemes derived from AV labels
I Category and family naming schemes

Design of a run-time classification system
I Algorithms and parameters based on experimental evaluation
I Evaluated against 76,000 distinct malware samples
I Enables more rapid response to newly disovered malware treats



System call analysis
Inferring a process’s function from its system call trace3

System call
Mechanism for requesting operating system (OS) services

System call categories
Atoms (strings)
Boot configuration
Debugging
Device driver control
Environment settings
Error handling
Files and general input/output
Jobs
Local procedure calls (LPC)
Memory management

Miscellaneous
Object management
Plug and play
Power management
Processes and threads
Processor information
Registry access
Security functions
Synchronization
Timers

3Forrest, “A sense of self for UNIX processes,” 1996.



System Call Service (SCS)
Data collection host-agent4

Designed for Windows 7, 8, Server 2008, and Server 2012 (32 and 64 bit)
Collects process-level system call traces from all processes

User Mode

Kernel Mode

Applications Services

Windows API

System call interface

OS kernel ETW

System Call
Service (SCS)

Device drivers

4SCS source code available: https://github.com/rcanzanese/SystemCallService

https://github.com/rcanzanese/SystemCallService


Information retrieval
Bag-of-system-call-n-grams representation5

Raw system call trace:

NtQueryPerformanceCounter

NtProtectVirtualMemory

NtProtectVirtualMemory

NtQueryInformationProcess

NtProtectVirtualMemory

NtQueryInformationProcess

Representation:

system call 2-gram bag count

NtQueryPerformanceCounter, NtProtectVirtualMemory 1
NtProtectVirtualMemory, NtProtectVirtualMemory 1
NtProtectVirtualMemory, NtQueryInformationProcess 2
NtQueryInformationProcess, NtProtectVirtualMemory 1

5Kang, “Learning classifiers for misuse and anomaly detection using a bag of system calls representation,” 2005.



Feature scaling

Term frequency – inverse document frequency (TF-IDF) transformation6

I De-emphasize commonly occurring n-grams

Singular value decomposition (SVD)7

I Reduce the dimensionality of the data
I Eliminate redundancy

Linear discriminant analysis (LDA)8

I Reduce the dimensionality of the data
I Separate instances of differing classes

6Liao, “Using text categorization techniques for intrusion detection,” 2002.
7Manning, Introduction to Information Retrieval, 2008.
8Bishop, Pattern Recognition and Machine Learning, 2006.



Classification

Multi-class logistic regression (LR)9

I One-versus-all approach using stochastic gradient descent (SGD)
I Assume linearly separable classes

Naive Bayes10

I Estimate priors from data
I Assume conditional independence

Random Forests11

I Realize non-linear decision surfaces
I High training complexity

Nearest neighbor12

I Realize non-linear decision surfaces
I High model & classification complexity

Nearest centroid13

I Assume equal variance and class convexity
9Genkin, “Large-scale Bayesian logistic regression for text categorization,” 2007.

10VanTrees, Detection, Estimation, and Modulation Theory, 2001.
11Breiman, “Random forests,” 2001.
12Bishop, Pattern Recognition and Machine Learning, 2006.
13Han, “Centroid-based document classification: analysis and experimental results,” 2000.



Evaluation

FNCk
false negatives

TPCk
true positives

FPCk
false positives

PrecisionCk
=

TPCk

TPCk
+ FPCk

RecallCk
=

TPCk

TPCk
+ FNCk

F1,Ck
= 2 · PrecisionCk

· RecallCk

PrecisionCk
+RecallCk



Ground truth label comparison

vendor type classes F1

AntiVir category 17 0.79
Microsoft category 20 0.75
DrWeb category 12 0.75
Microsoft family 315 0.71
Vipre category 47 0.71
ESETNOD32 family 301 0.68
Panda category 19 0.68
Avast category 12 0.66
K7AntiVirus category 16 0.65
DrWeb family 241 0.59
... ... ... ...
McAfee family 125 0.53
Panda family 111 0.53
Ikarus family 442 0.5
Kaspersky family 290 0.49
FSecure family 175 0.48
Emsisoft category 73 0.48
Avast family 220 0.47
TrendMicro family 227 0.46
GData family 261 0.43
Emsisoft family 293 0.43



Classifier and feature extraction strategy comparison
detector feature extraction F1

LR TF-IDF 0.70
nearest neighbor TF-IDF, SVD 0.67
nearest neighbor TF-IDF, SVD, LDA 0.67
random forests TF-IDF, SVD 0.67
random forests TF-IDF, SVD, LDA 0.67
LR TF-IDF, SVD, LDA 0.56
LR TF-IDF, SVD 0.53
Gaussian naı̈ve Bayes TF-IDF, SVD, LDA 0.50
nearest centroid TF-IDF, SVD, LDA 0.42
Gaussian naı̈ve Bayes TF-IDF, SVD 0.39
multinomial naı̈ve Bayes TF-IDF 0.33
nearest centroid TF-IDF, SVD 0.19

Other advantages of LR:
Low classification complexity
Model can easily be updated when new training instances are added



Classification accuracy vs. n-gram length
Fixed trace length, l = 1500

1 2 3 4 5

n-gram length

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

w
ei

g
h
te

d
F

1
sc

or
e

Microsoft-family

Microsoft-category

AntiVir-category

ESETNOD32-family



Classification accuracy vs. trace length
Fixed n-gram length, n = 3

250 500 750 1000 1250 1500 1750 2000

trace length

0.3

0.4

0.5

0.6

0.7

0.8

w
ei

gh
te

d
F

1
sc

o
re

Microsoft-family

Microsoft-category

AntiVir-category

ESETNOD32-family



Categorical confusion matrix

B
a
c
k
d
o
o
r

D
D

o
S

D
ia

le
r

E
x
p
lo

it

H
a
c
k
T

o
o
l

M
o
n
it

o
ri

n
g
T

o
o
l

P
W

S

R
a
n
so

m

R
o
g
u
e

S
o
ft

w
a
re

B
u
n
d
le

r

S
p
a
m

m
e
r

T
ro

ja
n

T
ro

ja
n
C

li
c
k
e
r

T
ro

ja
n
D

o
w

n
lo

a
d
e
r

T
ro

ja
n
D

ro
p
p

e
r

T
ro

ja
n
P

ro
x
y

T
ro

ja
n
S
p
y

V
ir

T
o
o
l

V
ir

u
s

W
o
rm

classifier output

Backdoor

DDoS

Dialer

Exploit

HackTool

MonitoringTool

PWS

Ransom

Rogue

SoftwareBundler

Spammer

Trojan

TrojanClicker

TrojanDownloader

TrojanDropper

TrojanProxy

TrojanSpy

VirTool

Virus

Worm

gr
ou

n
d

tr
u

th

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9



Malware family reults
Microsoft MMPC labels

Highest classification accuracy
Narrowly defined families

Trojan.Mydoom
Trojan.Recal
Trojan.Jeefo
Worm.Klez
Virus.Elkern

Lowest classification accuracy
Broadly defined families

Trojan.Meredrop
Trojan.Gandlo!gmb
Trojan.Ircbrute!gmb
Trojan.Sisron!gmb
VirTool.Vtub



System block diagram
Shows classifier integrated with a system call-based detection system

Processes

Detector

Logistic Regression
Page's CUSUM test

Classifier

Logistic Regression
Microsoft or ESET labels

System Call
Service

Binary decisions
(`malicious' or `benign')Suspected malware family

System call traces

NtQueryPerformanceCounter
NtProtectVirtualMemory
NtProtectVirtualMemory
NtQueryInformationProcess
NtProtectVirtualMemory
...

Feature Extractor

Information retrieval

Ordered 3-grams

Feature scaling

Frequency vs. log frequency
IDF transformation

L2 norm

Feature selection

4,000 feature selected using RFE

feature vectors



Observations

Classification accuracy is dependent on:

Ground truth labeling system
I Family-level labels provide most meaningful results
I MMPC and ESET labels provide highest accuracy

Feature extraction strategy
I Trace lengths of at least 1500 system calls
I n-gram lengths of at least 3
I TF-IDF feature scaling

Classification algorithm
I Multi-class logistic regression



Summary and conclusions

Objective
Classify malware at run-time in production environments based on easily
observable characteristics

Feature extraction and classification comparison
I Compared multiple feature scaling techniques and model parameters
I Compared multiple classifiers

Evaluated the effects of ground truth labeling strategies
I Derived labels from AV naming systems
I Evaluated classifiers using category and family labels

Presented the design of a run-time classification
I Evaluated against 76,000 malware samples run in production environments
I Established through experimental evaluation



Remaining questions

How well can classifier differentiate among classes of benign behavior?

How easily can malware authors manipulate classification results?

How do unsupervised approaches (clustering) compare?

Are there more meaningful classes to use (remediation strategies)?

How to improve results for poorly performing classes?

How can this approach be paired with other approaches (static)?



Run-time Classification of Malicious Processes
Using System Call Analysis

Ray Canzanese
Dept. of Electrical and Computer Engineering

Drexel University
rcanzanese@gmail.com

Spiros Mancoridis
College of Computing and Informatics

Drexel University
mancors@drexel.edu

Moshe Kam
Newark College of Engineering

New Jersey Institute of Technology
kam@njit.edu

Malcon 2015
20-23 October

Fajardo, Puerto Rico

mailto:rcanzanese@gmail.com
mailto:mancors@drexel.edu
mailto:kam@njit.edu

	Introduction
	System call analysis
	Feature extraction
	Classification
	Experimental Results
	Experimental Results
	Conclusions

