
Detection and Classification of Malicious Processes Using System Call Analysis

A Thesis

Submitted to the Faculty

of

Drexel University

by

Raymond J. Canzanese, Jr.

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

May 2015

c© Copyright 2015
Raymond J. Canzanese, Jr.

ii

Dedications

To Madison,

without whose support and companionship this would

have been a far less rewarding and enjoyable experience.

iii

Acknowledgments

Throughout the course of writing this thesis, I was surrounded by an outstanding community who

provided the support, inspiration, encouragement, and distraction necessary for its completion. To

my advisers, Moshe Kam and Spiros Mancoridis, and committee, Naga Kandasamy, Ko Nishino,

Harish Sethu, and Steven Weber, I am most thankful. It was their insights, guidance, feedback, and

support that made this thesis possible. I cannot overstate the depth and breadth of the lessons I

have learned from them, which have shaped not only this thesis, but my general approach to problem

solving, my outlook on life, and my ambitions.

That my advisers managed to find the time, energy, and patience to meet with me regularly

to discuss my successes and failures confounds me. Watching them advance in their careers while

remaining so humble and grounded has been truly inspiring. I also had the great fortune to learn

from a number of other faculty members here at Drexel who have helped shape and inspire this

work, including Kapil Dandekar, John Walsh, Tom Chmielewski, Ali Shokoufandeh, and Marcello

Balduccini.

My friends and colleagues here at Drexel, especially those members of the Data Fusion Lab

and Software Engineering Research Group, have also served to educate, motivate, and inspire me.

Among these are Bradford Boyle, Jeff Wildman, Chris Lester, Sayandeep Acharya, Gus Anderson,

Dave Dorsey, Pramod Abichandani, Rich Primerano, George Sworo, Alex Fridman, DJ Bucci, Yifei

Xu, Feiyu Xiong, Ji Wang, Cole Gindhart, Arjun Rajasekar, Maxim Shevertalov, Ed Stehle, Rob

Lange, Kevin Lynch, Bill Mongan, Bander Alsulamy, Matt Ping, and Alex Duff.

I am grateful for the years of support and assistance provided by the ECE staff, especially Chad

Morris, Kathy Bryant, Tanita Chapelle, Phyllis D. Watson, Sean Clark, Taif Choudhury, and Wade

Kirkpatrick.

I am especially grateful to the KEYSPOT Network, The City of Philadelphia’s Office of Inno-

vation and Technology (OIT), The Mayor’s Commission on Literacy, and the Department of Parks

iv

and Recreation (PPR) for their support of their research. Thank you to the KEYSPOT Executive

Committee – Judith Rényi, Patrick Morgan, Andrew Buss, and Joann Ferroni – for their support.

Thank you also to Jennifer Kobrin, Maria Walker, Adena Klem, and all of those who helped make

the KEYSPOT collaboration possible. None of this would have been possible without the selfless

work of Andy Stutzman who facilitated this collaboration. Thank you to the People’s Emergency

Center, especially Tan Vu and Desmond Hinkle, and the Dornsife Center for Neighborhood Partner-

ships, especially Sarah Steltz and Kevin Williams, for their support and participation. Thank you

also to Paul Dougherty and George Lauro, who afforded me the opportunity to share my work with

a much wider audience than would have otherwise been possible.

Finally, thank you to my friends and family, without whose love, support, encouragement, en-

thusiasm, and distraction, none of this would have been possible.

This research is sponsored by a Secure and Trustworthy Cyberspace (SaTC) award from the

National Science Foundation (NSF), under grant CNS-1228847.

v

Table of Contents

List of Tables . ix

List of Figures . x

List of Acronyms . xi

Abstract . xiv

1. Introduction . 1

1.1 Malware . 1

1.1.1 Malware naming . 3

1.1.2 Malware delivery mechanisms . 5

1.1.3 Malware motivations . 6

1.1.4 Malware defenses . 6

1.1.5 Recent malware trends . 7

1.2 Behavioral malware analysis . 8

1.3 System call tracing . 10

1.4 Detecting and classifying unknown malware samples 13

1.5 The importance of empirical evaluation . 14

1.6 Research contributions and thesis outline . 15

2. Related Work . 17

2.1 Malware detection . 17

2.1.1 Static analysis techniques . 17

2.1.2 Dynamic analysis techniques . 18

2.1.3 System call analysis . 18

2.2 Malware classification . 21

2.2.1 Static analysis techniques . 21

2.2.2 Dynamic analysis techniques . 22

vi

2.3 Novelty of this thesis . 23

2.3.1 Addressing conflicting claims . 23

2.3.2 Detector performance at low false positive rates (FPRs) 24

2.3.3 Online detection . 24

2.3.4 Sequential detection . 24

2.3.5 Experimental evaluation . 25

2.3.6 Online classification . 25

3. Experimental Setup . 26

3.1 System Call Service (SCS) . 26

3.1.1 Memory and computational overhead . 29

3.2 Production data collection . 32

3.3 Malware testbed . 34

3.3.1 Malware collector . 35

3.3.2 Controller and virtual machine hosts . 36

3.3.3 Network simulator . 38

3.4 Malware samples . 39

3.5 Ground truth labeling . 41

3.6 Conclusions . 42

4. Feature Extraction . 44

4.1 Information retrieval . 45

4.2 Feature selection . 48

4.3 Feature scaling . 51

4.3.1 TF-IDF transformation . 51

4.3.2 Unit-magnitude scaling . 53

4.4 Feature reduction . 53

4.4.1 Truncated singular value decomposition (SVD) . 53

4.4.2 Linear discriminant analysis (LDA) . 55

TABLE OF CONTENTS TABLE OF CONTENTS

vii

4.5 Feature extraction evaluation . 56

5. Malicious Process Detection . 58

5.1 Malware detection algorithms . 58

5.1.1 Signature-based detector . 59

5.1.2 Multinomial log-likelihood ratio test (LLRT) . 60

5.1.3 Linear support vector machines (SVMs) . 62

5.1.4 Logistic regression (LR) . 64

5.2 Sequential malware detection . 65

5.2.1 Wald’s sequential probability ratio test (SPRT) . 65

5.2.2 Page’s cumulative sum (CUSUM) test . 67

5.3 Malware detector evaluation . 68

5.3.1 Detector performance measures . 68

5.3.2 Cross-validation . 70

5.4 Experimental results . 71

5.4.1 Detector, n-gram length, and trace length comparison 71

5.4.2 Feature extraction comparison . 76

5.4.3 Feature selection . 78

5.4.4 Regularization . 81

5.4.5 Block-wise detection performance . 81

5.4.6 Effects of drift . 83

5.4.7 Error analysis . 85

5.4.8 Malware comparison . 87

5.5 Case study . 89

5.6 Sequential detection results . 90

5.7 Conclusions . 91

6. Malware Classification . 93

6.1 Malware classification algorithms . 93

TABLE OF CONTENTS TABLE OF CONTENTS

viii

6.1.1 Multi-class logistic regression (LR) . 94

6.1.2 Näıve Bayes . 94

6.1.3 Random forests . 95

6.1.4 Nearest neighbors . 97

6.1.5 Nearest centroid . 97

6.2 Malware classifier evaluation . 98

6.2.1 Precision . 98

6.2.2 Recall . 99

6.2.3 F1 score . 99

6.2.4 Cohen’s κ statistic . 100

6.3 Experimental classification results . 101

6.3.1 Ground truth comparison . 101

6.3.2 Classifier comparison . 103

6.3.3 Category-level classification results . 105

6.3.4 Family-level classification results . 107

6.3.5 Feature selection . 109

6.4 Conclusions . 110

7. Conclusions . 111

7.1 System design . 111

7.2 Summary of system operation . 113

7.3 Discussions . 114

Bibliography . 118

Vita . 126

ix

List of Tables

1.1 Names assigned to two malware samples by five antivirus (AV) vendors 4

2.1 Summary of related work in system call-based malware detection 19

3.1 Most common malware categories used in this study . 40

3.2 Most common malware families used in this study . 41

4.1 Ordered and unordered 2-gram representation of a system call trace 46

5.1 System calls present in the selected feature set of 4,000 3-grams 79

5.2 ESET family labels of false negatives . 86

5.3 Per-family malware detector performance . 88

5.4 Sequential detection results for Page’s CUSUM test and Wald’s SPRT 91

6.1 Classification ground truth performance comparison for the LR classifier 102

6.2 Classifier and feature extraction comparison . 104

6.3 Per-family classifier precision, recall, and F1 scores . 108

x

List of Figures

1.1 Example system call trace of web browser process . 12

1.2 Block diagram of malware detection and classification system 16

3.1 System Call Service block diagram . 27

3.2 Kernel trace using Event Tracing for Windows (ETW) 28

3.4 System Call Service production deployment . 33

3.5 Malware testbed block diagram . 34

4.1 The feature extraction process . 45

5.1 Comparison of the LR, SVM, SIG, and LLRT detectors 73

5.2 Detector n gram length analysis . 75

5.3 Detector feature extraction comparison . 77

5.4 Feature selection analysis . 78

5.5 SVM and LR detector regularization analysis . 81

5.6 Block-wise detection analysis and the effects of ignoring the first 100 system calls 82

5.7 Detector drift analysis . 84

6.1 Classifier confusion matrix for Microsoft category ground truth labels 105

6.2 Effects of feature selection on classification accuracy . 109

7.1 Block diagram of malware detection and classification system 112

7.2 Flow chart showing specifics of detector and classifier operation 113

7.3 Model update feedback loop . 116

xi

List of Acronyms

ADD average detection delay

API application programming interface

APT advanced persistent threat

AUC area under the curve

AV antivirus

CART classification and regression trees

CUSUM cumulative sum

DDoS distributed denial of service

DoS denial of service

ETW Event Tracing for Windows

FPR false positive rate

i.i.d. independent, identically distributed

I/O input/output

IDF inverse document frequency

IDS intrusion detection system

LDA linear discriminant analysis

LLRT log-likelihood ratio test

LPC local procedure call

LR logistic regression

LSA latent semantic analysis

NIDS network intrusion detection system

OS operating system

OVA one-versus-all

PCA principal component analysis

PE portable executable

xii

PID process identifier

PWS password stealer

r.v. random variable

RFE recursive feature elimination

ROC receiver operating characteristic

SCS System Call Service

SEM standard error of the mean

SGD stochastic gradient descent

SPRT sequential probability ratio test

SSDT system service descriptor table

SVD singular value decomposition

SVM support vector machine

TF term frequency

TF-IDF term frequency – inverse document frequency

TID thread identifier

TPR true positive rate

ULS ultra large scale

VM virtual machine

VMM virtual machine manager

List of Acronyms List of Acronyms

xiii

List of Notation

{·} An unordered set

〈·〉 An ordered sequence

[·] A matrix or column vector

‖ · ‖ The norm of a vector

card(·) The cardinality of a set

� Hadamard element-wise matrix product

pX(x) The probability distribution function of a random variable X

K Number of malware classes

N Number of training samples

l System call trace length

n Length of system call n-gram

Ck The set of all malware samples belonging to the kth class

y A vector of binary labels

x̂ The feature vector of a system call trace output by the feature extractor

X The set of all training data

XB The set of all training data collected from benign processes

XM The set of all training data collected from malicious processes

X A matrix formed by horizontally concatenating all training vectors

Λ The decision statistic of a detector

λ The decision threshold of a detector

w Vector of feature weights used by a detector

µ Sample mean

σ2 Sample standard deviation

σ Sample variance

xiv

Abstract
Detection and Classification of Malicious Processes Using System Call Analysis

Raymond J. Canzanese, Jr.
Moshe Kam, Ph.D. and Spiros Mancoridis, Ph.D.

Despite efforts to mitigate the malware threat, the proliferation of malware continues, with record-

setting numbers of malware samples being discovered each quarter. Malware are any intentionally

malicious software, including software designed for extortion, sabotage, and espionage. Traditional

malware defenses are primarily signature-based and heuristic-based, and include firewalls, intrusion

detection systems, and antivirus software. Such defenses are reactive, performing well against known

threats but struggling against new malware variants and zero-day threats. Together, the reactive

nature of traditional defenses and the continuing spread of malware motivate the development of

new techniques to detect such threats. One promising set of techniques uses features extracted from

system call traces to infer malicious behaviors.

This thesis studies the problem of detecting and classifying malicious processes using system

call trace analysis. The goal of this study is to identify techniques that are ‘lightweight’ enough

and exhibit a low enough false positive rate to be deployed in production environments. The major

contributions of this work are (1) a study of the effects of feature extraction strategy on malware

detection performance; (2) the comparison of signature-based and statistical analysis techniques

for malware detection and classification; (3) the use of sequential detection techniques to identify

malicious behaviors as quickly as possible; (4) a study of malware detection performance at very

low false positive rates; and (5) an extensive empirical evaluation, wherein the performance of the

malware detection and classification systems are evaluated against data collected from production

hosts and from the execution of recently discovered malware samples. The outcome of this study is a

proof-of-concept system that detects the execution of malicious processes in production environments

and classifies them according to their similarity to known malware.

1

Chapter 1: Introduction

Malware, short for ‘malicious software’, are any software with an intentionally malicious function.

Malware are used for espionage, extortion, and sabotage, and used to perform other unauthorized

tasks. Such tasks include sending unwanted email messages (spam) and participating in distributed

denial of service (DDoS) attacks. Malware exist in various forms, including embedded malware,

mobile malware, malicious scripts, and malicious bytecode. This study seeks to identify the execu-

tion of standalone binary executable malware files (i.e., malware samples) in traditional computing

environments (e.g., servers, workstations, laptops, and notebooks). A computer host is considered

‘infected’ if it has executed any known malware samples. Otherwise, it is considered ‘clean’.

In this chapter, Section 1.1 provides a summary of common malware functions and delivery

mechanisms, taditional malware defenses, and recent malware trends. Sections 1.2–1.3 introduce

behavioral malware analysis and system call tracing. Section 1.4 describes the motivations for

and challenges in performing behavioral malware analysis online, and Section 1.5 emphasizes the

importance of empirical evaluation. Section 1.6 summarizes the research contributions of this thesis.

1.1 Malware

Malware are traditionally characterized by their malicious functions, delivery mechanisms, and au-

thorship or heritage. The following categories describe common malicious functions.

Backdoors

Backdoors provide clandestine remote access to an infected host, typically bypassing normal

authentication and security mechanisms.

Bots

Bots enable remote control of a host. The infected hosts are typically part of a network of

infected hosts, referred to as a botnet. Bots are used for performing distributed operations,

such as sending spam, mining crypto-currency, or performing DDoS attacks [1, 2].

2

Downloaders and droppers

Downloaders and droppers install additional malware on infected hosts. Downloaders download

additional malware from remote servers, while droppers are bundled with additional malware.

Ransomware

Ransomware restrict access to a host, by disabling or hiding normal functions, or by encrypting

or hiding data. Ransomware are typically used to extort money from affected users [3].

Rootkits

Rootkits covertly provide persistent and privileged access to a host. Rootkits typically hide

processes, hide files, and interfere with security software to evade detection.

Scareware

Scareware use fear to sell a typically useless product. For example, rogue antivirus (AV)

software erroneously report malware infections and are used to sell the service removing the

reported infections [4].

Spyware

Spyware steal private user information, such as financial data, browsing habits, license keys,

and login credentials. Spyware typically transmit the stolen information to a remote server.

Malware are also characterized by their delivery mechanisms, the methods by which they spread to

and infect new hosts. The following malware categories describe common delivery mechanisms [5].

Exploits

Exploits take advantage of software vulnerabilities to enable privileged execution of malware.

Logic bombs

Logic bombs are malicious functions embedded in otherwise benign software.

Trojan horses

Trojan horses, also known as Trojans, are malware disguised as legitimate software, used to

trick users into unknowingly installing malware.

Chapter 1: Introduction 1.1 Malware

3

Viruses

Viruses are self-replicating malware that insert code into other programs, files, or locations on

an infected host.

Worms

Worms are self-replicating malware that spread to other hosts, typically over a computer

network.

To maximize their effectiveness and evade defenses, malware samples typically include multiple

malicious functions and use multiple delivery mechanisms. As such, malware samples typically

exhibit characteristics of multiple categories.

1.1.1 Malware naming

No single, universal malware taxonomy or naming scheme exists. Instead, multiple naming schemes

have been developed by major security companies to identify malware samples. Such naming schemes

typically include a malware category label, which indicates the primary delivery mechanism and/or

malicious function of a malware sample, and a malware family label, which indicates specific shared

function, authorship, or heritage. Examples of malware families include Zeus/Zbot, Flame, Stuxnet,

Duqu, MyDoom, and Sality. Often, naming systems include a sub-family or variant label, indicated

by an alphanumeric identifier. Naming systems may also specify the target platform of a malware

sample or the language in which it is written.

The existence of malware samples that use multiple delivery mechanisms and perform multiple

malicious functions complicate the malware naming process. Although the functions and delivery

mechanisms listed in Section 1.1 are not mutually exclusive, malware naming schemes typically

indicate only the primary function or delivery mechanism of a sample. Existing malware naming

schemes suffer from two major drawbacks: incompleteness and inconsistency [6]. The naming

schemes are incomplete because there are known malware samples missing from each scheme. The

major challenges to creating a complete naming schemes are the number of existing malware samples

and frequency at which new malware samples are discovered. More than 50 million new malware

Chapter 1: Introduction 1.1 Malware

4

Table 1.1: Names assigned to two malware samples by five antivirus (AV) vendors

vendor sample A sample B

Microsoft PWS:Win32/Zbot PWS:Win32/Zbot.AEO

Kaspersky Trojan-Spy.Win32.Zbot.tivt Trojan-Dropper.Win32.Injector.crie

ESET Win32/Injector.BGXN None

McAfee Labs None Generic Dropper!1jk

Dr. Web Trojan.PWS.Panda.655 Trojan.PWS.Panda.655

samples were discovered in the fourth quarter of 2014 alone, an average of 6 new malware samples

every second. McAfee Labs projects to have more than 500 million total samples in their collection

by the end of 2015 [7].

Existing malware naming systems are inconsistent because different naming schemes do not

place malware samples consistently in the same category or family. One of the major challenges to

achieving consistent malware naming is the overlap in malware functions and delivery mechanisms.

Furthermore, malware samples are often composed of code derived from multiple different sources,

complicating the problem of establishing malware authorship or heritage. Finally, malware samples

are typically designed to complicate the types of analyses used to reveal their functions, delivery

mechanisms, authorship, and heritage. Techniques used by malware authors to complicate such

analyses include obfuscation, packing, encryption, anti-debugging, anti-disassembly, and other anti-

analysis techniques [8].

The inconsistency and incompleteness of malware naming schemes are demonstrated in Table 1.1

The table shows the names assigned to two malware samples by five different AV vendors, Microsoft1,

Kaspersky2, ESET3, McAfee4, and Dr. Web5. The names are presented in the formats provided by

the vendor. The incompleteness of the naming schemes is demonstrated by the missing name for

sample A from McAfee and the missing name for sample B from ESET. The inconsistency of the

naming schemes is demonstrated through a comparison of the labels assigned by each vendor. For

example, Microsoft identifies both samples as distinct variants belonging to the password stealer

1Microsoft Malware Protection Center (MMPC), http://www.microsoft.com/security/portal/mmpc/
2Kaspersky Lab, www.kaspersky.com
3ESET NOD32, www.eset.com
4McAfee Labs, http://www.mcafee.com
5Dr. Web, www.drweb.com

Chapter 1: Introduction 1.1 Malware

http://www.microsoft.com/security/portal/mmpc/
www.kaspersky.com
www.eset.com
http://www.mcafee.com
www.drweb.com

5

(PWS) category and Zeus/Zbot family. Dr. Web similarly identifies the samples as being members

of the PWS category and from the same family, but does not differentiate between the two samples.

Kaspersky identifies the samples as belonging to two distinct categories, Trojan-Spy and Trojan-

Dropper, and two distinct families, Zbot/Zeus and Injector.

1.1.2 Malware delivery mechanisms

Malware primarily infect hosts through the exploitation of security vulnerabilities, through the ex-

ploitation of lax security practices, and through social engineering. Security vulnerabilities are used

by malware authors to enable privileged malware execution. These include input validation, code in-

jection, buffer overflow, privilege escalation, and cross-site scripting vulnerabilities [9]. While many

vulnerabilities are discovered and patched by the authors of affected software, others are discovered

and exploited by an attacker before the vulnerabilities are known. Such vulnerabilities, known as

zero-day vulnerabilities, are particularly worrisome for commonly used software, as they enable mal-

ware authors to successfully infect many vulnerable hosts. Furthermore, malware exploiting zero

day vulnerabilities can spread largely unchecked until the exploited vulnerabilities are discovered

and patched.

Malware targeting hosts with lax security typically seek easy targets, such as hosts with weak

passwords. For example, some malware scan computer networks for hosts running common network

services. The malware attempt to access the discovered services by performing dictionary attacks

with common username and password combinations.

Social engineering is the use of disguises, ploys, or tricks to convince a user to unknowingly assist

an attacker in infecting a host [10]. One common social engineering tactic is the use of Trojan horses

to trick users into downloading and installing malware. For example, the Zeus/Zbot malware family

has been used in targeted email campaigns, sent to potential victims as electronic greeting cards

from the White House, Federal Trade Commission complaints, and shipping invoices.

Of these three delivery mechanisms, the exploitation of security vulnerabilities is comparatively

rare. This is largely due to the engineering effort required to identify exploitable security vulnera-

bilities. When vulnerabilities are discovered, they are typically sold on the black market to be used

Chapter 1: Introduction 1.1 Malware

6

in cyber-attacks [11]. Furthermore, exploits are only useful as long as the targeted vulnerabilities

remain open [12]. Conversely, social engineering requires only a sufficiently convincing ploy to trick

targeted users, and the discovery of computer hosts with lax security is easily automated.

1.1.3 Malware motivations

Malware authors are motivated by a number of factors, including politics, ideologies, and mone-

tary gain. Politically and ideologically motivated malware are increasingly being used as parts of

sophisticated, targeted attacks known as advanced persistent threats (APTs) [11]. APTs typically

use multiple delivery mechanisms to gain access to a target’s computer systems. Examples of APTs

include Stuxnet, used for sabotage at an Iranian nuclear facility [13], and Operation Aurora, used

for corporate espionage [14].

Malware are also particularly useful as profit source. Some malware, such as Zeus/Zbot, are sold

in the form of crimeware kits used for creating customized malware samples [15]. Malware authors

also sell access to botnets, which are typically used to provide phishing and spam services, to mine

crypto-currency, and to perform DDoS attacks [16]. Spyware are used to steal sensitive data, such

as user credentials and financial data, which are sold in the black market [17]. Ransomware and

scareware are used to extort money from the users of infected hosts [4].

1.1.4 Malware defenses

Traditional defenses against malware include the adoption of secure computing practices, the design

of more secure systems, and the use of security-related software tools. Secure computing practices

include

• keeping software up-to-date to mitigate the chance of known vulnerabilities being exploited [4];

• safeguarding private information against casual reconnaissance; and

• adopting security policies to reduce the number of possible attack vectors on a host.

Teaching secure computing practices to end-users is an especially important step in preventing

intrusions enabled by lax security practices, slowing the proliferation of Trojan horses, reducing the

success of phishing attempts, and thwarting other attempts at social engineering [18, 19].

Chapter 1: Introduction 1.1 Malware

7

There has also been a considerable effort to design computing systems with security in mind,

a field known as trusted computing [20]. Techniques used in trusted computing include protecting

sensitive information at the hardware-level and signing code so users can verify whether it comes

from a trusted source. Recent malware trends indicate that malware authors have begun digitally

signing their malware to avoid detection by such mechanisms. McAfee reports nearly 16 million

distinct signed malware samples have been discovered through the beginning of 2015 [7].

Software tools used to protect against malware infections include intrusion detection systems

(IDSs) and AV software. IDSs are used to detect malware and other malicious intrusions. Host IDSs

detect intrusions at the host-level, by monitoring operating system (OS) interaction, file access, and

audit data [21, 22]. Network intrusion detection systems (NIDSs) detect intrusions at the network

level, by monitoring network traffic. IDSs can be signature-based, detecting intrusions based on

patterns of known attacks [23], or anomaly-based, detecting intrusions by identifying deviations

from normal behavior [24, 25].

AV software typically identify files as either benign or malicious by comparing them against a

database of byte signatures of known malware [5]. The strengths of AV software are that they provide

a low false positive rate (FPR) and have easily provable and quantifiable performance against known

malware samples. However, the weakness of signature-based AV software is that they are reactive,

typically requiring new malware to be discovered and analyzed prior to detection. Furthermore, AV

software to fail to detect new malware variants that have been modified just enough to not match any

existing signatures. In response, AV software incorporate heuristic techniques to identify common

types of malware, and signatures are designed to detect as many variants of a malware sample

as possible. Techniques for streamlining malware analysis and reducing the number of required

signatures are of particular interest to AV vendors [7, 26].

1.1.5 Recent malware trends

To evade detection by AV software, malware authors generate new malware variants by reordering,

encrypting, recompiling, compressing, padding, or otherwise changing malware samples without

altering their function [8]. Such changes can be applied automatically using specialized software,

Chapter 1: Introduction 1.1 Malware

8

such as encrypters and packers. Certain types of malware modify themselves automatically as

they propagate. Polymorphic viruses mutate by re-encrypting critical parts of themselves, while

metamorphic viruses mutate by changing their own code structure as they propagate [27, 28]. As

malware authors have become more savvy at creating new malware variants, the burden on AV

vendors to create signatures to detect all of the variants has increased. The time it takes for AV

software to detect a new malware sample varies from a few days to many months [29].

New malware variants can be released over the course of many months or years. For example,

the Zeus/Zbot malware family was first discovered in 2007. In 2010, more than 90,000 new, distinct

variants were discovered [11]. More than 8 years after its introduction, new variants of Zeus/Zbot

continue to be discovered. Another popular technique for releasing malware variants is the variant

flood attack. In a variant flood attack, tens of thousands of variants are released in rapid succession.

The goal of such an attack is to overwhelm AV vendors, who struggle to quickly analyze and generate

signatures for all of the variants [30].

Computing infrastructure continues to grow in both size and complexity, as illustrated by recent

trends such as the emergence of cloud computing and ultra large scale (ULS) systems [31]. This

increase in complexity introduces new security vulnerabilities, while simultaneously complicating

the detection of malware-based cyber-attacks. The combined effects of the increasing prevalence

and sophistication of malware, the vulnerability of traditional AV software to malware variants, and

the increasing complexity of computing infrastructure, motivate the development of techniques to

detect the malware samples that evade traditional defenses. Among the most promising techniques

are those from behavioral malware analysis, described in the following section.

1.2 Behavioral malware analysis

Among the techniques proposed to address the weaknesses of traditional malware detection methods

are those based on dynamic analysis or behavioral analysis. In behavioral analysis, observed charac-

teristics of executing software are used to detect the presence of malware. Behavioral characteristics

are a desirable source of information, since they are typically unaffected by the obfuscations used

to evade traditional AV software. One of the major challenges in designing a behavioral malware

Chapter 1: Introduction 1.2 Behavioral malware analysis

9

detector is to determine a set of behavioral characteristics that

• can be used to differentiate between malware and benign software;

• can be used to differentiate among different families and categories of malware;

• are robust to differences in benign functions, configurations, workloads, and usage patterns;

• are difficult for malware authors to obfuscate; and

• are easily observable in the target environment.

The first two criteria focus on the discriminability afforded by the characteristics, i.e., whether

they contain enough information to detect and classify malware. Not only must the characteristics

provide dicrimination, they must must also afford high detection rates at very low false positive rates

(FPRs) [32]. The FPR of a malware detector is especially important because of the relatively low

incidence of malware infections when compared to the number of events that a malware detector

observes. How the FPR of a detector is characterized depends on the type of detector. For AV

software, the FPR might be characterized as the fraction of all benign files that are incorrectly

identified as malware [33]. For an IDS, the FPR might be characterized as the fraction of observed

events misclassified as malicious. The FPR of a detector can also be characterized as the average

time between false positives.

The third criterion focuses on the robustness of the chosen characteristics. To be applicable to a

wide variety use-cases, the characteristics should be unaffected by differences among benign systems,

such as host and software configurations. The chosen characteristics should also be unaffected by

benign changes in workload or usage patterns.

The fourth criterion focuses on the robustness of the characteristics in terms of the estimated

level of effort required for obfuscation. In the case of static signature-based detection, the required

level of effort is low. Malware authors employ an automated process of generating new variants and

comparing them against the latest available AV signatures. Variants that are undetected are deemed

suitable for deployment. If appropriate behavioral characteristics are chosen for detection, there is

no longer a simple, well-defined obfuscation process to evade detection. The challenge for malware

Chapter 1: Introduction 1.2 Behavioral malware analysis

10

authors changes from the relatively easy changing of the structure of a static file to evade detection,

to the comparatively more difficult altering of the behavioral characteristics of a program while

maintaining its malicious function. The most successful type of attack against a behavioral malware

detector would likely be a mimicry attack. In a mimicry attack, malware samples are designed to

behave more like benign software to evade detection [34]. Shadow attacks are another possible type

of attack, wherein malicious behaviors are divided among multiple processes [35]. Such attacks are

successful against process-level system call signature detectors when crafted to obfuscate specific

detection signatures. The selected behavioral characteristics must be difficult for malware authors

to obfuscate while maintaining malicious functionality.

The final criterion concerns the observability of the chosen characteristics on the target platform.

First, observation of the chosen characteristics must be feasible on the target platform to even be

considered. For example, the entire control flow graph of software program may be useful for

characterizing software function and detecting malware. However, such information is difficult to

reliably extract, limiting its practical applicability [36]. Second, the desired characteristics may be

observable, but the costs associated with extracting the required information may be prohibitive.

For example, an accounting of all of information flow through a host may be useful for identifying

privacy-breaching malware. However, the overhead introduced by monitoring the information flow

is very high, precluding its use in complex production systems [37]. The problem of selecting the

appropriate characteristics to use for behavioral malware detection is addressed in Chapter 4.

1.3 System call tracing

One particularly promising source of behavioral characteristics for malware detection are system call

traces. A system call trace is a detailed accounting of the system calls occurring on a host. System

calls are a mechanism used by software programs to request OS services. In the Microsoft Windows

family of OSs, the set of all 465 system calls (although not officially documented) can be partitioned

into the following categories [38],

Chapter 1: Introduction 1.3 System call tracing

11

• atoms (for string manipulation),

• boot configuration,

• debugging,

• device driver control,

• environment settings,

• error handling,

• files and general input/output (I/O),

• jobs,

• local procedure calls (LPCs),

• memory management,

• miscellaneous,

• object management,

• plug and play,

• power management,

• process and thread management,

• processor information,

• registry access,

• security functions,

• synchronization, and

• timers.

System call traces are of interest for malware detection because they provide information about

how executing software interact with a host OS. In particular, system call-based malware detection

works under the assumption that the function of a program can be coarsely determined by observing

its system call trace [39]. This assumption applies to malware because their malicious functions

(described in Section 1.1) require the use of OS services. A major challenge in system-call based

malware detection is the determination of feature set to extract from system call traces that satisfies

the criteria described in Section 1.2.

The relative ease of obtaining system call traces also makes them a desirable source of information

for malware detection. Traces can be obtained using the strace program or auditd framework in

Linux, or the Event Tracing for Windows (ETW) framework in Windows. A system call trace is

typically a log of two types of events, system call enters and system call exits. System call enter

events typically include information about the processor from which a system call originates and

the data passed as input to the call. System call exit events typically include the data returned

by a system call. The rate of system calls on a host varies based on processor speed, number of

Chapter 1: Introduction 1.3 System call tracing

12

NtQueryPerformanceCounter

NtProtectVirtualMemory

NtProtectVirtualMemory

NtQueryInformationProcess

NtProtectVirtualMemory

NtQueryInformationProcess

NtQueryInformationProcess

NtQueryInformationProcess

NtQueryInformationProcess

NtQuerySystemInformation

NtQuerySystemInformation

NtAllocateVirtualMemory

NtFreeVirtualMemory

NtAllocateVirtualMemory

NtQuerySystemInformation

NtFreeVirtualMemory

NtOpenDirectoryObject

NtOpenDirectoryObject

NtOpenSymbolicLinkObject

NtQuerySymbolicLinkObject

NtClose

NtAllocateVirtualMemory

NtQueryVirtualMemory

NtOpenFile

NtQueryVolumeInformationFile

NtQueryAttributesFile

NtOpenFile

NtCreateSection

NtMapViewOfSection

NtQuerySection

Figure 1.1: Example system call trace showing the first 30 calls made by a web browser process

processor cores, and type and intensity of computational load. On the hosts used in this study, the

rate at which system calls are made ranged from hundreds of system calls per second to hundreds

of thousands of system calls per second.

Another advantage to using system call tracing for malware detection is that system call traces

can be collected in real-time on production hosts. By logging only a subset of the data – e.g., by

ignoring input arguments, ignoring returned data, sampling the data, or aggregating the data – the

memory, processing, and storage overhead required for system call tracing can be tuned to enable

live data collection and processing.

Figure 1.1 shows an example system call trace in the format used for this study. It is a process-

level trace of a web browser, beginning when the web browser process was created. It shows the

system calls made by the web browser process in the order in which the corresponding system call

enter events were observed. Only the first thirty system calls of the trace are presented for brevity.

Chapter 1: Introduction 1.3 System call tracing

13

This system call format is advantageous because the sequence of system calls depicted in Figure 1.1

can be concisely encoded and stored for later analysis. Such system call traces can be collected at

multiple different levels, including the host, application, process, and thread levels.

1.4 Detecting and classifying unknown malware samples

Section 1.1.4 identified two types of malware against which traditional defenses struggle, i.e., new

malware samples and new variants of existing malware samples. Such malware are typically free

to perform their malicious tasks until they are discovered. Even if the security vulnerabilities or

lapses that led to the infection are corrected, or the processes where the infection originated are

terminated, the malware samples typically have already gained privileged access to the host and

will remain active. Such samples are discovered by users or administrators who observe abnormal

behavior that can be attributed to the malware infection. The discovery of such malware infections

is not straightforward, as many malware samples are designed to hide their presence.

Historically, malware infections were identifiable through obvious indicators, such as degradation

of system performance, excessive network traffic, excessive hard drive access, or frequent crashes. As

malware become more sophisticated and focused on stealth, characteristics traditionally associated

with malware infection have become less pronounced. For example, three malware families – Stuxnet,

Flame, and Duqu – ran undetected in production environments for over a year before they were

discovered [13, 40–42]. Such malware samples serve as motivating examples for this study.

The goal of this study is to establish a set of techniques for identifying malicious processes,

especially those resulting from the execution of new malware samples and malware variants that

evade traditional defenses. Furthermore, the goal is to detect such infections as quickly as possible,

to limit the adverse effects of the malware. The three primary components of this thesis are the

study of the problems of feature extraction, malware detection, and malware classification.

Feature extraction

The objective of feature extraction is to identify a set of features that can be extracted from system

call traces and that satisfy the criteria described in Section 1.2. The extraction of the selected

Chapter 1: Introduction 1.4 Detecting and classifying unknown malware samples

14

features must be simple enough that it can be performed in real-time on production hosts. This

study uses frequency information about localized patterns of system calls as its primary feature set.

The data are extracted using information retrieval techniques inspired by document classification.

This study also seeks to identify the smallest set of features to use for detection. Using the smallest

possible set of features serves to reduce the memory and computational overhead of the system and

to avoid the adverse effects of detector and classifier overfitting.

Malware detection

The objective of malware detection is to establish a set of techniques for detecting malware exe-

cution in real-time on production hosts. This work compares the empirical detection performance

of signature-based and statistical anomaly-based detection techniques that are ‘lightweight’ enough

to be used in production environments. The techniques are evaluated against system call traces

collected from production environments and from the execution of recently discovered malware sam-

ples. Emphasis is placed on characterizing detector performance at very low FPRs and on performing

detection as quickly as possible using sequential detection techniques.

Malware classification

The goal of the malware classification is to establish a set of techniques to classify new malware

samples based on their behavioral similarity to known malware. Classification results provide insight

into the damage caused by detected malware samples and possible paths for mitigation. The focus

of this study is on classification techniques that use the same behavioral features as the detector.

The techniques studied in this thesis can be applied to classify malware samples immediately as they

are detected, without requiring any additional data collection.

1.5 The importance of empirical evaluation

To be useful in production environments, a malware detection system must exhibit a high detection

rate at an acceptably low FPR [32]. Furthermore, detection performance must be quantified in

environments representative of those in which the system is likely to be deployed, or preferably

quantified using data collected from the target environments [43].

Chapter 1: Introduction 1.5 The importance of empirical evaluation

15

The requirement to evaluate proposed detection and classification results in representative en-

vironments precludes the use of specialized sandbox environments. Sandbox environments provide

detailed information about software execution, including filesystem, registry, process, and system

call activity [44]. However, sandbox environments typically limit execution paths and provide a

limited view of software function [45]. Thus, data collected from such environments are typically

not representative of data collected from production environments.

A major component of this thesis is the empirical evaluation and comparison of the described

feature extraction, malware detection, and malware classification techniques. This study used a

custom host-agent to collect system call traces from production hosts running 32-bit and 64-bit

versions of Windows 7 and 8, and Windows Server 2008 (R2) and 2012 (R2). A custom malware

testbed was used to inject recently discovered malware samples onto live hosts. The empirical

evaluation considered more than 55,000 malware samples first discovered between January 2012 and

March 2015 and 4 million system call traces collected from 43 hosts. In total, more than 1,000

host-days of data collected between October 2014 and March 2015 were used for the experimental

evaluation of the described techniques.

1.6 Research contributions and thesis outline

The preceding sections introduced three key challenges in behavioral malware detection and classi-

fication, including

• feature extraction from system call traces,

• rapid detection of malicious processes at a low FPR, and

• classification of detected malware using only the features available at detection time.

The remaining chapters of this thesis address these three challenges, describing a system for detecting

the execution of malicious processes on production computer hosts. The system, depicted in the

block diagram in Figure 1.2, uses a custom host-agent to track the system call traces of every

process executing on a host. From the traces, it extracts numerical feature data that are used by

the detector to provide binary decisions indicating whether a process is benign or malicious. If

Chapter 1: Introduction 1.6 Research contributions and thesis outline

16

Computer Host
Processes

Feature
Extractor

Detector

Classifier

system call
traces

feature
data

feature
data

System Call
Tracer

Binary decisions
(`malicious' or `benign')

Suspected malware
category and/or family

Figure 1.2: Block diagram of malware detection and classification system

the detector identifies suspected malware, the classifier determines the most likely category and/or

family to which the malware belong. The specific configuration of the system is determined through

experimental evaluation of multiple feature extraction, detection, and classification strategies.

The primary differences between this work and the related literature are presented in Chapter

2. Chapter 3 describes the design and deployment of the data collection host-agent. Chapter 4

provides a detailed overview of the feature extraction process. Chapter 5 examines the performance

afforded by four detection techniques. Sequential detection techniques are also explored to provide

a continuous monitoring scheme for malware detection and to provide more rapid detection results

than are afforded by fixed sample-size tests. Through experimental evaluation, the feature extraction

strategies, detection algorithms, and sequential detection strategies that provide the best detection

performance are identified. The selected strategies are used in a case study to test the detection

system’s performance against an independent data set collected from public computer laboratories.

Chapter 6 describes five classification strategies for identifying the category and family of detected

malware samples based on their behavioral similarity to known malware. It compares the accuracy of

the classifiers using 27 ground truth labeling schemes derived from AV labels. Chapter 7 concludes

with a summary and discussion of the experimental results, the resulting design of a behavioral

malware detection and classification system, and the implications of this study.

Chapter 1: Introduction 1.6 Research contributions and thesis outline

17

Chapter 2: Related Work

This chapter presents a review of the related work in malware detection and classification, with a

focus on behavioral analysis techniques developed to address the shortcomings of traditional defenses.

Additional related work can be found in surveys by Idika and Mathur [46], and by Egele, Scholte,

Kirda, and Kruegel [44]. A detailed discussion and comparison of commercial antivirus (AV) software

can be found in a survey by Sukwong, Kim, and Hoe [29].

2.1 Malware detection

The related work in malware detection seeks to identify techniques that are more robust than existing

byte signature and heuristic techniques popular among AV software. The proposed techniques

include static analysis techniques, in which features are extracted from static files, and dynamic

analysis techniques, in which features are extracted from executing software.

2.1.1 Static analysis techniques

Static analysis techniques use features of static files to identify potential malware. Early work in

static analysis focused on byte code analysis, using data mining and machine learning instead of tra-

ditional signature generation techniques [47]. Entropy-based byte code analysis techniques have also

been proposed to detect packed, encrypted, or embedded malware [48]. Other useful static features

include the strings, file headers, imported libraries, and calls to external application programming

interface (API) functions present in a static executable file [49–51]. Even the approximate authorship

dates of the functions composing a program are useful features for malware detection [52].

Control flow information is also useful for malware detection. For example, formal semantics can

be used to describe common malicious behaviors in terms of their control flow, and the resulting

models can be used to detect semantically equivalent code [53, 54]. Other approaches use control

flow information to detect computer worms [55], web browser spyware [56], and metamorphic mal-

ware [57–59]. However, techniques for detecting semantically equivalent code have demonstrated to

18

be effective only against specific obfuscations [60]. Furthermore, static analysis techniques relying

on relatively high-level features – such as control flow graphs – are limited by the difficulty of ex-

tracting the required information. Such techniques typically require malware first be unpacked and

disassembled [61]. Unfortunately, malware are often encrypted, compressed, or otherwise designed

specifically to complicate such analyses [36].

2.1.2 Dynamic analysis techniques

Dynamic analysis techniques have been widely studied as a means of addressing the shortcomings

of static analysis techniques. One such technique, taint analysis, identifies malicious behaviors by

tracking information flow [45, 62–66]. Taint analysis is particularly useful for identifying privacy-

breaching malware. It works by monitoring access to sensitive data and identifying potentially

malicious use of such data. However, its computational overhead, high false positive rate (FPR),

and vulnerability to relatively simple countermeasures limit its practical applicability [37, 67].

Other dynamic analysis techniques use data collected from hardware performance counters, which

provide information about processor usage, such as cache misses and branch predictions [68, 69].

Software performance monitors, such as those that report CPU, memory, network, and application-

specific resource usage information, are also useful features for malware detection [70–72]. Sensors

specific to the Java Virtual Machine have also been used to detect the execution of malicious Java

code [73]. Other techniques mine audit data [74] or monitor registry and filesystem operations [75]

for indicators of malware infections.

2.1.3 System call analysis

System call traces (described in Section 1.3) have been a popular source of information for dynamic

malware detection. The use of system call traces for malware detection originated in intrusion detec-

tion, where abnormal system call sequences were flagged as evidence of potential intrusions [22, 39].

System call-based malware detection has been approached using both signature-based and statisti-

cal techniques. Signature-based techniques seek to identify system call patterns unique to malware

samples, while statistical techniques seek models to describe benign and malicious behaviors.

Chapter 2: Related Work 2.1 Malware detection

19

Table 2.1: Summary of related work in system call-based malware detection

Strategy Features Detection Evaluation

Forrest et al. [39] call sequences signatures intrusion detection

Hofmeyr et al. [22] call sequences signatures intrusion detection

Warrender et al. [76] call sequences, call
frequency

HMM, rule
learner

intrusion detection

Liao and Vemuri [77] call frequency nearest neighbor intrusion detection

Kang et al. [78] call frequency SVM, LR, näıve
Bayes, decision
tree, rule learner

intrusion detection

Xin and Xu [79] call sequences Markov models,
temporal differ-
ence learning

intrusion detection

Burguera et al. [80] call frequency clustering 3 benign,
5 malicious
(3 self-written)

Martignoni et al. [65] activities graph matching 11 benign,
7 malicious

Tokhtabayev et al. [81] activities signatures 210 benign,
31 malicious

Mehdi et al. [82] call sequences rule learner,
SVM, decision
tree

72 benign,
72 malicious

Kirda et al. [56] activities signatures 18 benign,
33 malicious

Kolbitsch et al. [83] data flow graph matching 5 benign,
563 malicious
(6 families)

Pfoh et al. [84] call sequences SVM 285 benign,
1943 malicious

Xiao and Stibor [85] call sequences latent Dirichlet
allocation

168 benign,
2880 malicious

Canali et al. [43] {sequences, tuples,
bags} of {calls, ac-
tivities, arguments}

signatures 363k benign,
7k malicious

Lanzi et al. [75] call sequences,
activities

signatures 362k benign
(242 applications),
10k malicious

Chapter 2: Related Work 2.1 Malware detection

20

A summary of the related work in system call analysis for malware detection is provided in

Table 2.1. The table presents the primary feature sets and detection algorithms used in each study,

along with a concise summary of the data used for experimental evaluation. The majority of the

works use system call sequences and frequencies as feature sets. Others argue system calls to be too

low-level, instead considering high-level activities extracted from system call traces. Such activities

included filesystem and registry changes, library interactions, and process creation and deletion

events. For detection, signature-based approaches are popular due to their white-box models and low

computational complexity during detection. Other approaches include the use of machine learning

and graph matching algorithms. Graph matching algorithms are used to compare the control flow

or data flow of a program to models of known benign and malicious behaviors. Such techniques

are intended to address the shortcomings of signature-based techniques, namely that they do not

generalize well to detecting unknown malware.

The approaches presented in Table 2.1 are partitioned into three groups, indicated by the hori-

zontal lines in the table. The studies in the first group [22, 39, 76–79] use system call trace data for

intrusion detection. These studies focus primarily on system call sequences and system call frequen-

cies as feature sets, using machine learning algorithms for detection. The techniques are evaluated

against system call traces of a small collection of Unix program, obtained under normal operating

conditions and during suspected intrusions.

The studies in the second group [56, 65, 80–85] use system call trace data for malware detection.

Like the intrusion detection work in the first group, a subset of these techniques use system call

sequences and frequencies for detection. Other feature sets derived from system call traces are also

considered, including models of malicious and benign activities [56], and data flow among system

calls [83]. The table indicates the quantity of benign and malicious software samples used for the

experimental evaluation of these techniques.

The studies in the third group [43, 75] also use system call trade data for malware detection. The

two studies in this group are set apart by their experimental evaluation. Whereas the studies in the

second group consider only a few malware samples or benign programs, the studies in the third group

Chapter 2: Related Work 2.1 Malware detection

21

consider thousands of malware samples and hundreds of thousands of traces of benign programs from

multiple hosts. Lanzi et al. [75] use system call signatures for detection, concluding that such an

approach is inadequate for malware detection. Instead, they present a system-centric approach that

uses models of filesystem and registry activities for detection. Canali et al. [43] take a signature-based

approach, using system calls, their arguments, and derived activities for malware detection. The

authors explore the use of contiguous sequences (sequences), non-contiguous sequences (tuples), and

unordered occurrences (bags) of calls and activities for detection. The results of this work indicate

that there is no closed form expression to describe the effects of model selectivity or specificity on

detection accuracy, underscoring the importance of experimental evaluation.

2.2 Malware classification

Malware classification is the process of determining to which class a particular malware sample be-

longs. Classes can be malware categories, families, subfamilies, or any other malware groupings.

Automatic classification can help guide malware analysis by providing information about the ori-

gin, authorship, or function of a malware sample. In live environments, classification is useful for

determining appropriate mitigation strategies and guiding post-mortem analysis. A large portion

of related work in malware classification focuses primarily on systems designed for off-line analysis.

Such work is motivated in part by the need to expedite the analysis of and signature creation for

newly discovered malware samples. The related work in malware classification includes both static

and dynamic analysis techniques.

2.2.1 Static analysis techniques

The feature sets used for static classification mirror those used in static detection, including

• strings, byte sequences, and program structure [47, 86, 87];

• API imports, calls, and call sequences [88]; and

• control flow information [89–91].

Chapter 2: Related Work 2.2 Malware classification

22

The classification algorithms used for static malware classification are primarily machine learning

techniques. Commonly used classification algorithms include

• näıve Bayes, decision trees, and support vector machines (SVMs) [47, 87];

• image classification techniques [86];

• hierarchical clustering analysis [88]; and

• graph matching and clustering algorithms [89–91].

2.2.2 Dynamic analysis techniques

Dynamic classification techniques typically require malware samples be executed in a specialized

analysis environment. Such environments, including Anubis [92] and cwsandbox [93], provide reports

that include information about loaded libraries and other resources; file and registry activities (files

and keys created, read, written, and deleted); memory activities (regions read and written); and

system call traces. Nearest neighbor techniques have been used to classify malware based on such

reports [93–95], with one study focusing on the problem of determining the best distance measure

to assess similarity [96]. Alternate machine learning algorithms have also been explored, including

näıve Bayes, SVM, decision trees, and neural networks [95]. Hierarchical clustering analysis based

on file, registry, and process activity have also demonstrated promise [6]. Techniques have been

described for classifying specific subsets of malware, including malware that communicate over a

network [97, 98] and certain rootkits that use API hooks [99].

As with malware detection, a subset of the classification techniques also focus primarily on system

call analysis. For example, system call traces extracted using cwsandbox and nearest neighbor

techniques have demonstrated success in classifying malware [100, 101]. Other techniques have used

activities derived from system call traces and clustering algorithms to perform classification [102].

Two recent studies combined static and dynamic analysis techniques for malware classification.

Neugschwandtner et al. [26] use static analysis based on a variety of features – including byte

sequences, program structure, program headers, and AV labels – to cluster malware according to

predicted behaviors. Then, they use dynamic analysis to analyze malware behaviors and generate

Chapter 2: Related Work 2.2 Malware classification

23

mitigation procedures. Anderson et al. [103] use SVMs and multiple static and dynamic data

sources – including byte sequences, op-codes, control flow graphs, instruction traces, and system

call sequences – for classification. These two studies leverage the strengths of static analysis (ease

of feature extraction) and dynamic analysis (richness of datasets) to perform malware classification.

2.3 Novelty of this thesis

This chapter explored the related work in malware analysis, describing feature sets and algorithms

used for malware detection and classification. Despite their differences, these techniques all exhibited

promising empirical accuracy against their respective datasets. This thesis seeks to address two

perceived shortcomings of the related work. First, the related work contains conflicting claims

regarding the effectiveness of feature sets, detection, and classification techniques. Second, the

related work lacks a study of detector performance at very low FPRs. This thesis also contributes

the design of an online detection system for malicious processes, a study of sequential detection

techniques for rapid malware detection, an extensive experimental evaluation, and the design of an

online classification system for malicious processes.

2.3.1 Addressing conflicting claims

Published results in malware detection contain conflicting claims. For example, signatures of system

call sequences have been declared both effective [39, 101] and ineffective [6, 75] for detecting malware.

Similarly, system call frequencies [78, 80] have been found effective for malware detection, while other

works advocate for more complex feature sets [79, 85]. These conflicting claims are at least partially

rooted in the use of different datasets for evaluation. Accordingly, this study compares the usefulness

of different types of features, including system call frequencies, ordered sequences of system calls,

and unordered tuples of system calls. This study also compares signature-based techniques and

statistical machine learning techniques for malware detection and classification. The techniques are

evaluated against a single set of system call traces collected from live computer hosts and recent

malware samples to ensure fair comparisons.

Chapter 2: Related Work 2.3 Novelty of this thesis

24

2.3.2 Detector performance at low FPRs

For malware detectors to be practically useful, they must demonstrate high detection rates at very

low FPRs [32]. For the majority of the related work, few claims regarding detection accuracy at

very low FPRs or the general applicatbility of the proposed technuques can be made. This is due to

the relatively small sample sizes considered for experimental evaluation. The two exceptional cases

in the related work were from Canali et al. [43] and Lanzi et al. [75], who used in excess of 100,000

benign traces in their evaluation. Canali et al. [43] provided a characterization of detection rate

at a FPR of 10−2, and characterized certain models at lower FPRs (∼ 10−3). The experimental

evaluation presented in this thesis focuses on the detection accuracy achieved at a FPR of 10−5.

2.3.3 Online detection

The goal of this study is to detect and classify the malware that evade traditional defenses and

execute on production hosts. Particularly, this study focuses on techniques that are ‘lightweight’

enough to be deployed online in production environments. In this way, this study is similar to related

work in intrusion detection (see Section 2.1.3), but with a singular focus on malware detection. This

work intends to identify techniques for malware detection that will be useful in identifying other

types of intrusions as well.

2.3.4 Sequential detection

A major concern in online malware detection is detecting malware quickly enough to mitigate their

damaging effects. To address this concern, this thesis studies the application of sequential detection

techniques to malware detection. A subset of the related work applies sequential detection tech-

niques to network data for the detection of worms and other network-based attacks [25, 104–106]

and for the detection of multi-stage cyberattacks [79]. In contrast, this work focuses on the appli-

cation of sequential detection techniques at the process level. Here, processes undergo continuous

monitoring, wherein successive detector outputs are combined to provide accurate detection results

while minimizing the delay between infection and detection.

Chapter 2: Related Work 2.3 Novelty of this thesis

25

2.3.5 Experimental evaluation

In the related work, the source of the system call traces used for experimental evaluation varied.

A common theme was the use of malware traces collected from specialized analysis environments.

Such sandbox environments limit execution paths, thereby offering a limited view of software func-

tionality [45]. Sandbox environments typically track only a fraction of the system calls available

in recent versions of Microsoft Windows. Another common theme was the use of benign process

traces collected using API hooking and system service descriptor table (SSDT) hooking in Microsoft

Windows XP [43, 75, 84, 85].

In contrast, this thesis focuses exclusively on system call traces obtained from live production

hosts. This includes the execution of recently discovered malware samples on live hosts configured

like those found in production environments. Executing malware on live hosts enables the malware

to behave more closely to how they would in a real-world environment. Furthermore, doing so

reduces the risk of biasing results by using traces collected from different environments. This thesis

studies the problem of malware detection in recent versions of Windows, including Windows 7, 8,

Server 2008 (R2), and Server 2012 (R2). The techniques used for system call tracing in this study

are more robust than the techniques of API hooking and SSDT hooking used in the related work.

2.3.6 Online classification

The related work in behavioral malware detection focused primarily on classification of malware

based on rich feature sets extracted using specialized environments. This study seeks to use a more

limited dataset, namely only those system call features used by the described malware detector. The

classifier uses the information already available when malware samples are detected on production

hosts to provide immediate classification results. The motivation for online classification is to provide

information for mitigation and postmortem analysis. Prior information about similar threats can

be used to suggest possible mitigations, and classification results can be used to guide the use of

more rigorous static and dynamic analysis tools. Thus, the goal of this study is not to outperform

more rigorous techniques, but rather to achieve comparable classification accuracy in production

environments with a more limited feature set.

Chapter 2: Related Work 2.3 Novelty of this thesis

26

Chapter 3: Experimental Setup

Experimental evaluation is essential for determining the effectiveness of malware detection and

classification systems [32, 43]. To evaluate the effectiveness of the techniques studied in this thesis,

system call traces were collected from benign and malicious software samples over a six-month period.

The traces were collected in home, research laboratory, and public computer laboratory settings,

and on a custom testbed, where recently discovered malware samples were executed. To collect the

traces, a custom host agent known as the System Call Service (SCS) was created. The main benefits

of the SCS are that it is low-overhead, transparent to the user, and can be deployed on any host

running a recent version of Microsoft Windows. This chapter describes the design and function of

the SCS. It also describes the datasets collected using the SCS, which are used to evaluate the feature

extraction, malware detection, and malware classification techniques described in Chapters 4-6.

3.1 System Call Service (SCS)

The SCS was created for two reasons. First, the specialized analysis tools used in the related

work to collect system calls offer a limited view of software functionality and exhibit high enough

overhead to preclude their usefulness in production environments. Second, alternative techniques

used in the related work rely primarily on application programming interface (API) hooking or

system service descriptor table (SSDT) hooking. The former technique requires the modification

of running software to intercept function calls, while the latter requires the overwriting of a kernel

data structure to intercept system calls. Both techniques affect the stability and reliability of the

systems on which they are deployed, and their usefulness is limited in recent versions of Windows.

In contrast to traditional system call analysis tools, the SCS

• uses built-in kernel logging functions available in recent versions of Windows;

• monitors access to every system call that is part of the core operating system (OS) kernel;

• does not require modification of monitored processes or kernel data structures; and

27

User Mode

Kernel Mode

Applications Services

Windows API

System call interface

OS kernel ETW

System Call
Service (SCS)

Device drivers

Figure 3.1: System Call Service (SCS) block diagram, showing how system calls originating
from all processes, including applications, services and drivers, are captured by the SCS using
the Event Tracing for Windows (ETW) framework

• exhibits low enough computational and memory overhead for deployment in production envi-

ronments.

The block diagram presented in Figure 3.1 illustrates the function of the SCS. The arrows indicate

the flow of system calls from applications, services, and drivers to the SCS where they are logged.

System calls are made in user-mode by applications and services through the Windows API and

in kernel-mode by device drivers and other code running at the kernel-level. The system calls are

handled by the system call interface, and the functions requested by the system calls are executed by

the OS kernel. The Windows kernel contains built-in kernel tracing functions provided by the Event

Tracing for Windows (ETW) framework. The SCS runs as a service application on the monitored

host.

The ETW framework is an event-driven framework. The events reported by the kernel tracer

include process creation and deletion, thread creation and deletion, system call enters and exits, and

context switches. The SCS tracks all of these events to attribute each system call to the process

and thread from which it originated. An example of the kernel tracer events and their metadata is

provided in Figure 3.2, which shows all of the system call enter, context switch, and thread start

Chapter 3: Experimental Setup 3.1 System Call Service (SCS)

28

System Call Enter FFFFF801 54FB8EE0 on core 0

Context Switch Exchanged 9224 4 for 0 0 on processor core 7

System Call Enter FFFFF801 54CA7A30 on core 8

Context Switch Exchanged 7788 5488 for 0 0 on processor core 8

System Call Enter FFFFF801 54FB8EE0 on core 0

System Call Enter FFFFF801 54FB8EE0 on core 0

Thread start TID 8000 PID 5488

System Call Enter FFFFF801 5507FD84 on core 0

Context Switch Exchanged 0 0 for 8000 5488 on processor core 5

System Call Enter FFFFF801 54FF92F0 on core 0

System Call Enter FFFFF801 54F9977C on core 0

System Call Enter FFFFF801 54FA5CB4 on core 0

System Call Enter FFFFF801 54F9977C on core 0

System Call Enter FFFFF801 54F9977C on core 0

System Call Enter FFFFF801 54FB0D24 on core 5

System Call Enter FFFFF801 54FF92F0 on core 0

System Call Enter FFFFF801 5507FE8C on core 5

Context Switch Exchanged 8000 5488 for 0 0 on processor core 5

System Call Enter FFFFF801 54F9977C on core 0

System Call Enter FFFFF801 54FA5CB4 on core 0

System Call Enter FFFFF801 54FF92F0 on core 0

System Call Enter FFFFF801 54FF92F0 on core 0

Context Switch Exchanged 0 0 for 5380 5424 on processor core 19

Figure 3.2: Kernel trace using Event Tracing for Windows (ETW), showing system call enter,
context switch, and thread start events over a 155µs interval

events collected over a 155µs interval. The system call events identify a system call by its memory

address (a 64-bit hexadecimal number), and identify the logical processor core on which each system

call originated. The SCS uses kernel debugging symbol tables to map the memory addresses to

system call names. The processes and threads executing on each processor core are identified by

the context switch events. The context switch events list the identifiers of the threads and processes

switched out of and onto a processor core. The identities of the processes and threads are determined

by monitoring the thread and process creation events.

Since the SCS tracks the threads and processes responsible for each system call, it can record

system call traces at the host, application, process, and thread levels. For this study, only process

level system calls are considered. The output of the SCS is a collection of system call traces, one

for every process observed on the monitored host. To assist in post-mortem analysis, the SCS also

records the following metadata for each host, process, and thread.

Chapter 3: Experimental Setup 3.1 System Call Service (SCS)

29

Host metadata

• Kernel version

• Processor cores

• Host identifier

Thread metadata

• Start time

• Stop time

• Thread identifier (TID)

• Parent process

Process metadata

• Start time

• Stop time

• Process identifier (PID)

• Parent process

• Image name

• Image path

• Image checksum (MD5)

The PID and TID identifiers are values used internally by the OS to identify threads and pro-

cesses. The process image name, path, and checksum refer to the executable file from which the

process was created, and are used to identify the software applications associated with each process.

The host identifier is an anonymized identifier used to differentiate data collected from different

hosts.

The SCS runs on both 32-bit and 64-bit versions of Windows, including Windows 7, 8, 8.1, Server

2008, Server 2008 R2, Server 2012, and Server 2012 R2. It is written in C# using the Microsoft .NET

Framework version 4.5. The outputs of the SCS are a collection of files each containing the system

call trace of a single process, and a database containing the described metadata. A representative

dataset collected from running the SCS for 60 minutes on a production host included metadata

from 90 processes and 3,255 threads. For this study, the SCS was configured to collect the first

10,000 system calls made by every process. The SCS stores the system call traces in a concise binary

format, resulting in system call trace sizes of at most 20 KB.

3.1.1 Memory and computational overhead

To be useful for data collection in production environments, the SCS was designed to have minimal

memory and processing overhead. The memory overhead of the SCS was determined by checking the

Chapter 3: Experimental Setup 3.1 System Call Service (SCS)

30

size in memory of the SCS under a variety of different conditions, including different OS versions,

.NET Framework versions, hardware configurations, and workloads. In total, the memory footprint

of the SCS was tracked over the period of one hour on 12 different hosts. The average memory

usage of the SCS process over the period of study was 50 MB. The SCS used more memory when

the workload on a system was high, particularly when there were a large number of processes being

simultaneously traced. In these circumstances, the SCS used as much as 170 MB of RAM. The

maximum memory usage was observed on a 12-core host serving as a virtual machine manager

(VMM) at nearly 100% CPU usage. Conversely, when the workload on a system was low and few

processes were being traced, the SCS used as little as 10 MB of RAM.

The computational overhead of the SCS was evaluated using the benchmark program PCMark81.

PCMark8 was used to characterize the computational overhead by comparing the benchmark perfor-

mance on a host running the SCS to the performance of the same host when the SCS was disabled.

The following benchmarks were used for this study:

• web browsing, which loaded and navigated websites;

• writing, which composed and manipulated text documents;

• photo editing, which displayed and manipulated image files;

• gaming, which rendered 3D graphics using DirectX;

• video playback, which played high definition video; and

• video encoding, which transcoded high definition video.

The PCMark8 benchmark program was chosen because its benchmarks represent real-world

use cases, and because it provides timing information for individual benchmarks. The baseline

performance was established by running the benchmarks on a host with the SCS disabled. For the

web browsing, writing, video encoding, and photo editing benchmarks, the overhead was measured

as the percentage increase in time it took to complete the benchmark over the baseline. For the

1PCMark8, FutureMark, http://www.futuremark.com

Chapter 3: Experimental Setup 3.1 System Call Service (SCS)

http://www.futuremark.com

31

0 5000 10000 15000 20000 25000 30000

system call trace length l

−4

−2

0

2

4

6

8

p
er

ce
n
ta

ge
ov

er
h

ea
d

web

writing

gaming

video playback

video encoding

photo editing

total score

Figure 3.3: Overhead analysis of the System Call Service (SCS) on a host in a home environ-
ment

gaming and video playback benchmarks, the overhead was measured as the percentage decrease in

the frame rate from the baseline. PCMark8 also provides an overall score, a weighted sum of the

individual benchmarks, that characterizes the overall performance of a system. The overhead for

the score was computed as the percentage decrease in the score.

Figure 3.3 summarizes the results of the benchmarks for a host in a home environment. The

figure shows the overhead of each of the benchmarks versus l, the maximum number of system calls

the SCS recorded from each process. The results presented are the average results from nine trials,

and the error bars show standard error of the mean (SEM) of the results. The results presented for

l = 0 are the baseline results achieved when the SCS was disabled.

Figure 3.3 shows that the SCS had no measurable effect on the video playback benchmark,

indicated by the near-zero overhead for all trace lengths. Video playback runs as a single process and

is neither processor-intensive nor system-call intensive. For the majority of the other benchmarks, the

Chapter 3: Experimental Setup 3.1 System Call Service (SCS)

32

overhead increased with the trace length. For each benchmark, the overhead reached its maximum

value once the trace length was long enough to record the majority of the system calls made during

the execution of the benchmark. The web, writing, gaming, and video encoding benchmarks all

experienced a maximum of 2% overhead. The photo editing benchmark experienced 7% overhead,

independent of the length of the collected traces. The dashed line in Figure 3.3 indicates the overhead

as measured by the overall benchmark score, indicating a maximum overhead under 2%.

The processing and memory overhead introduced by the SCS is largely dependent on the type

and intensity of the system load. In particular, short-lived processes that are CPU and system call

intensive experience the highest overhead, incurred primarily during process creation and deletion.

The overhead of the SCS results primarily from its input/output (I/O) routines, since the SCS logs

process creation and deletion events and writes system call traces directly to disk. Furthermore, the

system call trace for each process is stored as a separate file, introducing file creation overhead at

the start of each trace and writing overhead at the end of each trace. These factors were largely

responsible for the high overhead observed for the photo editing task, which was both processor

intensive and involved the execution of many short-lived processes.

The SCS performs so much I/O because it is primarily a data collection tool, designed to record

raw system call traces. Raw system call traces were collected to study the effects of feature ex-

traction strategies, but would not be collected in a production deployment of the system. Rather,

the SCS would store aggregate information about the system call traces in memory and perform

detection and classification on the aggregate data. Thus, the I/O burden of the SCS would decrease.

Furthermore, the overhead of the SCS could likely be decreased by optimization of its source code

or by implementing critical features in a lower-level language.

3.2 Production data collection

The goal of this work is to evaluate the accuracy of a malware detection and classification system

against real-world datasets. To achieve this goal, the SCS was deployed in production environments

in a research laboratory, in a home environment, and in public computer laboratories. The main

purpose of this deployment was to collect traces from a variety of benign software programs against

Chapter 3: Experimental Setup 3.2 Production data collection

33

Internet
System

Call
Trace

Database

Public computer lab hosts

SCS

Campus network hosts

SCS

Home network hosts

SCS

Figure 3.4: System Call Service production deployment, showing the home, campus, and
public computer lab hosts sending system call traces to a centralized system call database

which to evaluate the detector. Figure 3.4 shows a diagram of the production deployment, indicating

the three different types of hosts where the SCS was deployed. The SCS recorded system call traces

on the monitored hosts and periodically transmitted the data over the Internet to a centralized server,

where the system call traces were stored in a database for later processing. The centralized storage

and processing of system call traces was performed for research purposes only. For a production

deployment, the SCS would perform local collection of the traces, which would be processed as they

are collected.

The research laboratory and home environments included 14 hosts with a variety of different

configurations and uses. The hardware included laptops, desktops, and servers, with 1− 24 logical

processor cores and 2− 32 GB of RAM. The host OSs included Windows 7, 8, Server 2008 R2, and

Server 2012 R2. The hosts were used as workstations for desktop publishing, technical drawing,

scientific computing, web-browsing, gaming, and multimedia. Two of the hosts were servers used as

the VMM for a malware detection testbed. The data from these environments were used for model

development and to characterize the false positive rate (FPR) of the detector.

Chapter 3: Experimental Setup 3.2 Production data collection

34

Malware Collector

Internet

Honeypots

Blacklists

Collections

Malware
Database

Malware
Collector

Controller

Metadata
Collector

VirusTotal

Benign
Software
Database

System
Call

Trace
Database

Testbed Hosts

SCS

Network
Simulator

Figure 3.5: Malware testbed block diagram

The SCS was deployed in two public access computing sites on 10 hosts. These computing sites

were part of KEYSPOT Network, led by The City of Philadelphia’s Office of Innovation and Tech-

nology (OIT), The Mayor’s Commission on Literacy, and The Department of Parks and Recreation

(PPR). The hosts were used by the public primarily for web-browsing and desktop publishing. They

were also used by students attending courses in technical literacy and professional development.

Users were provided a standard suite of pre-installed software and given permission to install addi-

tional software at their discretion. The hosts were workstations running 32-bit and 64-bit editions

of Windows 7. The data from the computing sites were used in a case study to determine how well

the developed techniques and models generalized to new environments.

3.3 Malware testbed

The malware testbed is a collection of 19 computer hosts created specifically for studying malware

behavior. The malware testbed was created to address the shortcomings of traditional malware

analysis environments, namely that they limit execution paths and monitor only a small fraction

of available system calls. More importantly, the malware testbed was created for consistency, so

Chapter 3: Experimental Setup 3.3 Malware testbed

35

malware could be studied using the same set of tools and in the same environments as the benign

software. This was done to ensure that the tools and environments did not bias the study, and

to ensure that the developed techniques could be implemented in production environments with

comparable results. Figure 3.5 provides a block diagram of the malware testbed, indicating its four

primary components (highlighted in gray):

• a malware collector, which gathers malware samples to use for analysis;

• a controller, which coordinates the analyses of the malware samples;

• the testbed hosts, where the malware samples are executed; and

• a network simulator, wcich interacts with the malware samples.

3.3.1 Malware collector

The malware collector was used to gather malware samples to study on the testbed, with a focus on

collecting currently active malware threats. It collected malware by deploying honeypots, crawling

blacklisted websites, and importing existing threat collections. Honeypots are decoys used to attract

cyber-attacks and were used to collect the payloads delivered by such attacks. The malware collector

used the Dionaea2 honeypot as part of the Stratagem3 Linux distribution to collect such payloads.

URL blacklists are commonly used by web browsers and security software to prevent users from

visiting malicious URLs. The threat collector intentionally visited these URLs, scraping the websites

for suspected malware samples. Finally, the threat collector imported malware collected by other

means, including malware samples obtained from publicly available malware collections and manually

collected malware samples.

The metadata collector was used to collect information about each malware sample, including

its hash, file type, origin, target platform, and matching antivirus (AV) definitions. The metadata

collector used the free online virus scanning service VirusTotal4 to scan each incoming malware

sample against multiple commercial antivirus (AV) definitions, and used the file identification tools

2Dionaea low-interaction honeypot, http://dionaea.carnivore.it
3Stratagem honeypot distribution, http://sourceforge.net/projects/stratagem/
4VirusTotal, http://www.virustotal.com

Chapter 3: Experimental Setup 3.3 Malware testbed

http://dionaea.carnivore.it
http://sourceforge.net/projects/stratagem/
http://www.virustotal.com

36

TrID and file to identify file types and target platforms. The collected metadata were stored

in a database along with the malware samples. For each malware sample, the collected metadata

included

• the number of AV detectors with which the sample was scanned,

• the number of positive detections,

• the AV labels of the sample,

• the date the sample was added to the collection,

• the source from which the sample was obtained,

• the date the AV results were last updated,

• the date the sample was first seen by VirusTotal,

• file and TRiD results, and

• MD5 and SHA1 hashes of the sample.

3.3.2 Controller and virtual machine hosts

The controller had two primary tasks, setting up the virtual machine (VM) hosts and injecting

malware. The controller interfaced with the Microsoft Hyper-V VMM to manage the VM images,

and used Microsoft PowerShell remoting to interface with the VM hosts. For each malware sample,

the controller performed the following sequence of tasks.

1. Restore a VM to a known clean state.

2. Transfer a malware sample onto the VM.

3. Start the VM with the SCS enabled.

4. Execute benign software on the VM at randomly determined time instances.

5. Execute the malware sample on the VM.

Chapter 3: Experimental Setup 3.3 Malware testbed

37

6. Shut down the target VM.

7. Transfer the collected system call traces and metadata to a database for analysis.

The VM hosts

A challenge in executing malware samples is that, in general, the dependencies of the malware

samples are not known a priori. For example, a malware sample may require specific OS versions,

application frameworks, or target applications to perform its malicious tasks. To overcome this

challenge, multiple VM host configurations were employed on the testbed, including hosts configured

specifically for the testbed and hosts cloned from production environments. The hosts ran multiple

Windows OS versions, had different sets of software installed, and had varying levels of software

patches applied. This diversity was used to make it more likely that a malware sample would

execute successfully on at least one of the hosts in the test environment.

The malware testbed consisted of two physical servers, each running Windows Server 2012 R2

and Microsoft Hyper-V. The 19 VM hosts used for this study ran Windows 7 (32-bit and 64-bit

editions), Windows 8, Windows 8.1, and Windows Server 2012 R2. The VM configurations each

included 1− 12 processor cores and 2− 8 GB of RAM. The software installed on each host included

multimedia editing software, programming utilities, a multimedia server, and desktop publishing

software.

Benign software

To mitigate potential bias that could arise from running only malware on the testbed hosts, the

controller executed both benign and malicious software on the hosts. More than 2,000 benign

applications were considered, including

• software distributed with the OS;

• video games, including first-person-shooters and card games;

• audio, video, and graphics viewing and editing software;

• office and productivity tools;

Chapter 3: Experimental Setup 3.3 Malware testbed

38

• security-related tools, including AV software;

• Internet related software, such as web browsers, videoconferencing, torrent, and messaging

software; and

• system utilities, such as file management and registry editing tools.

The benign software were instrumented in two different ways; either the software were allowed to

run without any interaction, or application-specific, scripted tasks were performed. The former

approach was used to mimic the method by which malware was injected, while the latter was used

to mimic more realistic use. Scripted tasks included saved video games being replayed, system

monitoring and management tools performing predetermined actions, software being installed, and

benchmarks being executed. The benign software programs and OSs installed on the testbed were

also periodically updated to their latest versions during the data collection period.

Malware injection

The second primary task of the controller was the injection of malware samples onto the hosts. This

task was performed in the same manner that the benign software were executed, using PowerShell

remoting. Each VM instance was used to execute only one malware sample. Each sample was

executed at a randomly determined time after the VM was started, between zero and fifteen minutes,

and allowed to run for at least four minutes before the VM was terminated. Each malware sample

was executed only once on the testbed.

3.3.3 Network simulator

A challenge in characterizing malware behavior is allowing the malware to perform their malicious

functions as they would in a production environment without putting production systems at risk. To

minimize the risk to production systems, the VMs used in this study were connected to an isolated

network. However, many malware samples perform tasks that require Internet connectivity. Such

tasks include communicating with command and control servers, propagating to other vulnerable

hosts on the network, transmitting stolen information, and sending spam.

Chapter 3: Experimental Setup 3.3 Malware testbed

39

To address this concern, the VMs were connected to an isolated network configured to route

all traffic from the VMs to a network simulator. The network simulator ran the Strategem Linux

distribution and a DNS server, configured to resolve all domain queries to the address of a Dionaea

honeypot. The honeypot configuration mirrored the configuration of the honeypot used for malware

collection (see Section 3.3.1). The honeypot provided network interaction with the malware, enabling

the malware samples to perform some of their network-centric tasks without exposing the malware

to a real-world network.

Over the course the described malware testing effort, the honeypot collected

• tens of thousands of logged TCP sessions per day;

• malicious binaries dropped by the malware samples executing on the testbed;

• detailed information collected by the malware samples about the testbed hosts, including

hostnames, IP addresses, license keys, passwords, and keylogger data;

• notifications from the malware samples indicating when a testbed host had been infected; and

• compressed or encrypted data files whose content could not be determined.

3.4 Malware samples

The malware collector described in Section 3.3.1 was used to collect more than 750,000 distinct

suspected malware samples, all standalone portable executable (PE) files. For this study, only those

samples first discovered after 1 January 2012 and identified as malicious by at least fifteen different

AV vendors were chosen. The first criterion was used to ensure that only recent malware samples

were used in the study, and the second criterion was used to ensure that the suspected malware

samples were actually malicious.

Of the malware samples studied, only a fraction successfully executed on the testbed. The

execution of a malware sample was considered successful if the processes created by the sample

ran for the duration of the data collection and performed at least 1,500 total system calls. These

criteria were established to ensure that enough information was collected from each malware sample

Chapter 3: Experimental Setup 3.4 Malware samples

40

Table 3.1: Most common malware categories used in this study, according to their Microsoft
and Kaspersky labels

Microsoft category samples
Backdoor 8,989
Worm 7,095
Virus 6,501
Trojan 6,371
Password stealer (PWS) 3,172
VirTool 3,105
TrojanDownloader 2,445
TrojanDropper 1,420
Rogue 996
TrojanSpy 713

Kaspersky category samples
Trojan 16,867
Backdoor 7,678
Virus 6,888
Worm 2,339
Trojan-Dropper 2,151
Trojan-Spy 2,048
Email-Worm 1,744
Trojan-Downloader 1,272
Trojan-Ransom 1,158
Net-Worm 1,029

to perform the analyses presented in this thesis. More than 55,000 distinct malware samples met

these criteria and were used in this study. Some 9,000 samples were executed on the testbed, but did

not produce enough data to be considered for the study. The majority of these samples terminated

immediately upon execution, likely because the host did not meet their requirements. Some 2,000

samples were injected on the testbed but failed to execute.

Among the malware samples used in this study, Table 3.1 shows the 10 most common malware

categories, according to their Microsoft and Kaspersky labels. The table shows the number of mal-

ware samples used in this study that belong to each of the categories. In total, the malware samples

represented 26 Microsoft categories and 25 Kaspersky categories. The most common categories were

Trojans, backdoors, viruses, worms.

Section 1.1 described two shortcomings of malware labeling systems, namely their incompleteness

and inconsistency. Table 3.1 and the data from which it was created provide additional evidence

of these shortcomings. First, nearly 25% of malware samples used in this study were unlabled

by the Microsoft naming scheme, and nearly 15% were unlabeled by Kaspersky, indicative of the

incompleteness of each of these naming systems. Furthermore, a comparison number of samples

in each category between the two tables illustrates the inconsistency of the naming schemes. For

example, nearly 50% of the labeled malware samples were identified as some type of Trojan by

Kaspersky, whereas only 25% of the labeled samples were identified as such by Microsoft.

Table 3.2 shows the 20 most common malware families among the malware samples used in this

Chapter 3: Experimental Setup 3.4 Malware samples

41

Table 3.2: Most common malware families used in this study, according to their Microsoft
and ESETNOD32 labels

Microsoft family instances
Worm.Mydoom 1,350
Backdoor.Fynloski 1,326
VirTool.CeeInject 1,201
Trojan.Malex 1,155
Backdoor.Bladabindi 1,132
Backdoor.Hupigon 1,082
Backdoor.Kelihos 1,041
Worm.Gamarue 1,010
Rogue.Winwebsec 877
PWS.OnLineGames 856
Worm.Allaple 762
Virus.Almanahe 756
Virus.Parite 711
TrojanDropper.Loring 703
Virus.Madang 699
VirTool.Obfuscator 647
Virus.Ramnit 644
Worm.Vobfus 632
Backdoor.Simda 617
Backdoor.Zegost 616

ESET family instances
Kryptik 4,799
Injector 4,765
Sality 1,990
Delf 1,721
AdWare.MultiPlug 1,530
MSIL/Injector 1,494
Mydoom 1,323
Agent 1,298
Fynloski 1,068
Hupigon 1,000
PSW.OnLineGames 982
Ramnit 961
IRCBot 949
MSIL/Bladabindi 816
Spy.Zbot 762
Alman 751
Madang 702
Farfli 662
Parite 652
VB 630

study, using the family names derived from their Microsoft and ESET labels. The tables show the

number of malware samples used in this study that belong to each of the families. In total, there were

1,373 Microsoft families and 1,012 ESET families represented in the malware set. The table indicates

that many common and well-defined malware families, such as MyDoom, Zeus/ZBot, and Ramnit

were among the most represented families used in this study. Other families listed in Table 3.2,

such as VirTool.Obfuscator and Injector, are more generically defined. VirTool.Obfuscator refers to

any generic obfuscated malware, and Injector refers to any malware that has the capability to inject

code into another process.

3.5 Ground truth labeling

The term “ground truth” refers to the absolute truth of something, and is used here to refer to the

assumed correct labels applied to the system call traces collected for this study. Although the ground

truth is treated as absolute, knowing whether every process is benign or malicious with certainty

is impossible. However, it is expected that the occurrence of errors in the ground truth are rare,

Chapter 3: Experimental Setup 3.5 Ground truth labeling

42

thereby limiting the effects that incorrect ground truth have on the experimental results. Applying

ground truth labels to malware samples for classification presents another challenge altogether, as

the existing AV labeling systems are incomplete an inconsistent. As such, this study considered

multiple ground truth labeling schemes derived from AV labels.

The binary ground truth labels indicated whether a process was benign or malicious. For malware

classification, all of the processes labeled ‘malware’ were also given ground truth labels based on

their AV labels. The malware traces were labeled according to 27 different labeling schemes derived

from AV labels, including category and family labels. For each malware sample executed on the

testbed, all of the processes created by the sample were assigned the same label.

The binary ground truth was generated primarily by comparing the checksums of the executable

images from which the processes were created against the VirusTotal database. While this covered

the majority of the processes, there were others that were not in the VirusTotal database. These

processes either had their images submitted to VirusTotal for analysis or were labeled based on

the circumstances surrounding their execution. For example, unknown processes created after the

execution of a malware sample on the testbed were labeled ‘malware’. Among these were apparent

metamorphic or polymorphic malware samples, which spawned hundreds of processes, each with a

distinct checksum. Unknown processes created before the execution of malware sample or observed

in the laboratory or home environments were labeled ‘benign’.

3.6 Conclusions

The SCS was used for a six month data collection campaign that resulted in the collection of some

1,000 host-days of data from 43 hosts. Of the data that were collected, this thesis studies the set of

all processes whose system call traces contained at least 1,500 system calls. This restriction enables

accurate comparisons of detection performance on trace lengths up to 1,500 calls. The datasets used

for the experimental evaluation presented in this thesis include more than

• 135,000 system call traces from the execution of more than 55,000 distinct malware samples

on the tested;

Chapter 3: Experimental Setup 3.6 Conclusions

43

• 4 million benign process traces from the execution of more than 7,000 distinct benign executable

images; and

• 56,000 system call traces collected from public computer labs.

The collected data are used along with their ground truth labels to evaluate the effectiveness of

the feature extraction, malware detection, and malware classification techniques described in the

following chapters.

Chapter 3: Experimental Setup 3.6 Conclusions

44

Chapter 4: Feature Extraction

This chapter addresses the first of the three major challenges presented in this thesis, that of feature

extraction. Feature extraction is the process of representing raw data as a set of features that are

informative and that facilitate analysis. This chapter explores feature extraction techniques primarily

inspired by document classification and adapted to work with the system call traces collected by

the System Call Service (SCS) described in Section 3.1. This chapter divides the feature extraction

process into four components,

Information retrieval: the process of extracting information from raw system call traces to use

for detection and classification (Section 4.1);

Feature selection: the process of selecting the most informative subset of features (Section 4.2);

Feature scaling: the process of applying weights to the extracted features to facilitate analysis

(Section 4.3); and

Feature reduction: the process of reducing the number of dimensions of the feature data to remove

redundancy and facilitate analysis (Section 4.4).

Figure 4.1 depicts the end-to-end feature extraction process as it is performed in practice, indicat-

ing the primary transformations considered for each of the four components. The feature extractor

takes as its input a system call trace from the SCS and outputs the representation of the trace

as a numeric feature vector x̂. The output feature vector x̂ is used as the input to the malware

detection and classification components of the system. The objective of this study is to identify the

subset of feature extraction techniques that afford the best detection and classification accuracy.

The remainder of this chapter provides detailed descriptions of the techniques considered for each

of the four components.

45

Feature ExtractorSystem call trace

NtQueryPerformanceCounter
NtProtectVirtualMemory
NtProtectVirtualMemory
NtQueryInformationProcess
NtProtectVirtualMemory
NtQueryInformationProcess
NtQueryInformationProcess
NtQueryInformationProcess
NtQueryInformationProcess
...

Information retrieval

n-gram length
ordered vs. unordered n-grams

Feature scaling

Frequency vs. log frequency
IDF transformation

L1 vs. L2 norm

Feature selection

RFE

Feature reduction

Truncated SVD
LDA

Transformed
feature vector

Figure 4.1: Feature extraction process, showing each of the four stages and the the transfor-
mations performed at each stage

4.1 Information retrieval

Previous work in system call-based malware detection and classification identified informative fea-

tures, including call frequencies, ordered call sequences, and unordered call tuples (Section 2.1.3).

This thesis presents a comparative study of these three types of features, using feature extraction

techniques inspired by research in document classification. Document classification is the process

of identifying to which category a text document belongs. The similarity between the system call

traces used in this thesis and the datasets used for document classification is the structure of the

data. In document classification, a text document can be represented as an ordered sequence of

words. Similarly, a system call trace can be represented as an ordered sequence of system calls. In

document classification, the patterns of words can be used to identify one of many characteristics,

including the topic, tone, or author of the text. In malware analysis, the patterns of system calls

can be used to determine the function of a program [39].

Feature extraction begins with information retrieval, which is the process of extracting informa-

Chapter 4: Feature Extraction 4.1 Information retrieval

46

Table 4.1: Ordered and unordered 2-gram representation of a system call trace

system call 1 system call 2 ordered unordered
NtAllocateVirtualMemory NtFreeVirtualMemory 1 2
NtAllocateVirtualMemory NtQuerySystemInformation 1 2
NtAllocateVirtualMemory NtQueryVirtualMemory 1 1
NtClose NtAllocateVirtualMemory 1 1
NtCreateSection NtMapViewOfSection 1 1
NtFreeVirtualMemory NtAllocateVirtualMemory 1 –
NtFreeVirtualMemory NtOpenDirectoryObject 1 1
NtMapViewOfSection NtQuerySection 1 1
NtOpenDirectoryObject NtOpenDirectoryObject 1 1
NtOpenDirectoryObject NtOpenSymbolicLinkObject 1 1
NtOpenFile NtCreateSection 1 1
NtOpenFile NtQueryVolumeInformationFile 1 1
NtOpenSymbolicLinkObject NtQuerySymbolicLinkObject 1 1
NtProtectVirtualMemory NtProtectVirtualMemory 1 1
NtProtectVirtualMemory NtQueryInformationProcess 2 3
NtQueryAttributesFile NtOpenFile 1 1
NtQueryInformationProcess NtProtectVirtualMemory 1 –
NtQueryInformationProcess NtQueryInformationProcess 3 3
NtQueryInformationProcess NtQuerySystemInformation 1 1
NtQueryPerformanceCounter NtProtectVirtualMemory 1 1
NtQuerySymbolicLinkObject NtClose 1 1
NtQuerySystemInformation NtAllocateVirtualMemory 1 –
NtQuerySystemInformation NtFreeVirtualMemory 1 1
NtQuerySystemInformation NtQuerySystemInformation 1 1
NtQueryVirtualMemory NtOpenFile 1 1
NtQueryVolumeInformationFile NtQueryAttributesFile 1 1
total 29 29

tion from the raw system call traces. For information retrieval, a bag-of-words model is used to

represent the traces. In text classification, a bag-of-words model is a representation of a text docu-

ment as a vector of word frequencies; i.e., a vector encoding the number of occurrences of each word

appearing in the document [107]. For malware analysis, a bag-of-words model is a representation of

system call trace as a vector of system call frequencies.

Representing a system call trace as a vector of system call frequencies is useful because the nu-

meric feature vectors facilitate malware detection and classification. However, system call frequencies

alone are not particularly informative (Section 5.4.1). Instead, this study also uses n-gram analysis

for information retrieval, where an n-gram is a contiguous ordered sequence of n items extracted

from from a larger sequence. The technique of n-gram analysis has applications in document clas-

sification and computational linguistics, where n-grams are sequences of letters or words extracted

Chapter 4: Feature Extraction 4.1 Information retrieval

47

from a text [108, 109]. System call n-gram analysis has proven useful for intrusion detection when

paired with a signature-based detector (Section 2.1.3).

This thesis considers two different types of system call n-grams. Ordered n-grams are ordered

sequences of n system calls appearing contiguously in a trace. Ordered n-grams provide information

about the local ordering of system calls. Unordered n-grams are unordered sets of n system calls

appearing contiguously in a trace. Unordered n-grams provide information about which system calls

typically appear near each other, but do not consider the order in which the calls appear. Both types

of n-grams are extracted from system call traces using a sliding window approach. For this study,

the bag-of-words representation and n-gram analysis are combined, and each system call trace is

represented as a vector of n-gram frequencies. This information retrieval technique is referred to as

the bag-of-n-grams model.

An example bag-of-n-grams representation of a system call trace is shown in Table 4.1. The table

shows both the ordered and unordered 2-gram representations of the system call trace in Figure 1.1

in Section 1.3. The table lists every distinct sequence of two contiguous system calls appearing

in the trace, along with the frequency of occurrence of each. Whereas the ordered 2-gram repre-

sentation differentiates between the sequences 〈NtFreeVirtualMemory, NtAllocateVirtualMemory 〉

and 〈NtAllocateVirtualMemory, NtFreeVirtualMemory 〉 and considers them to be distinct 2-grams,

the unordered 2-gram representation considers these sequences to be instances of the same 2-gram,

{NtAllocateVirtualMemory, NtFreeVirtualMemory }. The ‘–’ symbol indicates that a sequence is a

reordering of another sequence listed in the table.

While Table 4.1 shows only the system call sequences appearing in the trace in question, a system

call trace can be more generally represented as a column vector x with one entry for each of the

possible system call n-grams. The SCS, which was used to collect the system call traces used in this

study, monitors access to 465 distinct system calls. Therefore, the length of the vector x is 465n

for the ordered n-gram representation, and O(465n) for the unordered n-gram representation. For a

system call trace of length l, where l� 465n, x is sparse, i.e, the vast majority of the features in the

vector are zero. To take advantage of this sparsity, the feature vectors x are stored in a sparse array

Chapter 4: Feature Extraction 4.1 Information retrieval

48

format when n > 1. Therefore, the storage complexity of a system call trace is O(l). The techniques

described in the following chapters, especially the stochastic gradient descent (SGD) algorithm used

to train the support vector machine (SVM) and logistic regression (LR) detectors and classifiers,

were selected to take advantage of the sparsity of the feature data.

4.2 Feature selection

The system call n-gram feature space is a very high dimensional space when n > 1. Furthermore, it

is not likely that every n-gram is equally informative for detection and classification. For example,

the frequency of occurrence of an article (such as ‘the’) in a text document likely conveys little

information about the topic of the document. Similarly, the frequency of occurrence of a commonly

used system call (such as NtAllocateVirtualMemory) likely conveys little information about the

malicious function of a process. The goal of feature selection is to experimentally identify the subset

of n-grams that is most informative.

The motivation for feature selection is two-fold. First, the storage and processing of high-

dimensional datasets introduces memory and processing overhead. The memory overhead arises

from the storage of the feature vectors, and the processing overhead arises from the application of

feature extraction, detection, and classification algorithms. Minimizing such overhead is especially

important in this study, because detection and classification are to be performed online and in real-

time on production hosts. The number of features grows exponentially in n, causing a dramatic

increase in overhead as n increases. Second, including non-informative features during training

can lead to overfitting, degrading detection and classification accuracy. Overfitting occurs during

training when a detector or classifier erroneously includes uninformative features in its decision rule.

In this work, recursive feature elimination (RFE) was used for feature selection [110]. RFE

was chosen over alternate feature selection algorithms for three primary reasons: First, RFE is a

multivariate technique that considers the set of all features during feature selection. This contrasts

with univariate techniques, which consider each feature in isolation. The advantage in using a

multivariate technique is that relationships among distinct features are considered during feature

selection. Next, RFE performs feature selection by evaluating a detector or classifier’s accuracy

Chapter 4: Feature Extraction 4.2 Feature selection

49

against training data. Thus, the subset of features selected by RFE is the subset that maximize the

empirical accuracy of the detector or classifier used for analysis. Finally, RFE works with detection

algorithms that provide feature weights. This is especially useful because the detection algorithms

considered in this work that provided the highest detection accuracy provide feature weights. Those

two algorithms, SVM and LR, were used to perform RFE.

RFE consists of both a training algorithm and a testing algorithm. The training algorithm

determines the appropriate subset of features to use for analysis, and the testing algorithm eliminates

the uninformative features from consideration. The testing algorithm selects the appropriate subset

of features from the vector x. In practice, information retrieval and feature selection are combined

during testing so that the SCS collects only information about the selected n-grams.

The RFE training algorithm works by training the detector or classifier with the set of all features

and removing the feature(s) with the lowest weights from consideration. This process is repeated

recursively until the desired number of features is selected. Since detection and classification are part

of the RFE training process, the RFE training algorithm also performs feature scaling. Described in

detail in the following section, feature scaling is a necessary step for preparing the data for detection

and classification. Using the same feature scaling techniques for testing and training also ensures

that the features selected during training maximize the testing performance. The inputs to the

training algorithm are the set X of training instances, a vector y of the corresponding labels of the

training instances, and the desired number of features. The output of the training algorithm is the

selected subset of the original features. The RFE training process is summarized as Algorithm 1.

Algorithm 1 is useful if the desired number of features is known a priori. To determine the number

of features to use for detection, RFE can be combined with cross-validation. Cross-validation is a

model validation technique used here to assess the effectiveness of the detection or classification

techniques used with RFE. Cross-validation is the process of partitioning a dataset into disjoint

subsets, using one subset for training and the other for testing. During RFE, cross-validation is

performed in two distinct steps. First, the training set is used train the detector or classifier. Then,

the testing set is used to evaluate the performance of the detector or classifier. Finally, the features

Chapter 4: Feature Extraction 4.2 Feature selection

50

Algorithm 1 Recursive feature elimination (RFE) training algorithm

desired number ← the desired number of features
X ← the training data
y ← the labels of the training data
selected features ← RFE(X)

function RFE(X)
if the number of features in X == desired number then

return selected feature subset
else

Perform feature scaling on X to get Xfs

Train the detection algorithm using the data Xfs and labels y to get the weights w
Xreduced ← the input X with the features with the lowest weight w removed
return RFE(Xreduced)

end if
end function

with the lowest weights are removed, and the process is repeated. The modified RFE training

algorithm with cross-validation is summarized as Algorithm 2.

Algorithm 2 Recursive feature elimination (RFE) training algorithm with cross-validation

X ← the training data
y ← the labels of the training data
scores ← an empty array to store the cross validation scores
RFECV(X)

function RFECV(X)
Partition X and y into training and testing sets
Perform feature scaling and train the detector using the training set to get w
Perform feature scaling and detection on the testing set
Evaluate the accuracy of the detector against the testing set
Prepend the accuracy to be beginning of the scores array
Xreduced ← the input X with the feature with the smallest weight w removed
RFECV(Xreduced)

end function

The RFE with cross validation training process is performed over multiple folds, and the accuracy

scores are averaged over the folds. The selected number of features is that which provides the

maximum cross-validation score,

desired number of features = arg max(scores). (4.1)

Chapter 4: Feature Extraction 4.2 Feature selection

51

After the desired number of features is selected, the RFE training process in Algorithm 1 is repeated

with the desired number as input to identify the appropriate feature subset to use for detection or

classification.

4.3 Feature scaling

Feature scaling is used to facilitate the application of detection and classification algorithms that are

sensitive to the ranges of the feature data. The motivation for feature scaling in this work is that

system call frequencies scale to different orders of magnitude. For example, in a subset of 6 × 109

system calls collected by the SCS, there were

• 4.3× 108 calls to NtQueryVirtualMemory,

• 1.9× 105 calls to NtRaiseHardError, and

• 19 calls to NtShutdownSystem.

The feature scaling transformations described in this section were selected to address the issue of

varying feature scales.

4.3.1 TF-IDF transformation

Term frequency – inverse document frequency (TF-IDF) transformation is an information retrieval

technique commonly used in document classification and also demonstrated to be useful in intrusion

detection [77, 111]. In document classification, frequently occurring words (such as ‘the’) are not

particularly informative, whereas rare words tend to carry a lot of information about the content of

a document. To address this issue, TF-IDF transformation applies weights to the word frequencies,

placing higher emphasis on rare words. Analogously, it is likely that frequently occurring system calls

(such as NtQueryVirtualMemory) are similarly uninformative. Therefore, TF-IDF transformation

is used to apply weights to system call sequences inversely to their frequency of appearance.

The TF-IDF transformation of a vector x is the element-wise product of two vectors: the term

frequency (TF), computed directly from the feature vector x, and the inverse document frequency

Chapter 4: Feature Extraction 4.3 Feature scaling

52

(IDF), computed from the set X of all feature vectors,

TF-IDF(x,X) = TF(x)� IDF(X) (4.2)

TF transformation can be applied directly to the feature data without any training. However, IDF

transformation requires training to learn the weights to apply to the features. This work considers

two different approaches for computing the TF. In the first approach, the TF is the raw n-gram

frequency,

TF(x) = x . (4.3)

This approach does not perform any feature scaling in the TF, instead relying on subsequent steps

to perform feature scaling. The second approach uses the logarithmic frequency of the n-grams

as the TF. This is done to account for the varying orders of magnitude of the features. With the

logarithmic frequency, Laplace smoothing is used to address the sparsity of the feature vectors [112],

resulting in the following expression,

TF(x) = log(x + 1) . (4.4)

Like the logarithmic frequency, the IDF addresses the varying feature scales. It applies feature

weights that vary inversely with frequency of occurrence of each feature, thereby placing higher

emphasis on rare n-grams. Considering N to be the number of traces in the training set X and d

to be a vector counting the number of traces in X in which each n-gram appears, the IDF is

IDF(X) = log

(
1 +N

1 + d

)
+ 1 . (4.5)

Laplace smoothing is used in the IDF calculation to prevent zero divisions arising from the sparsity

of the data, and the result is offset by one to ensure that every feature receives a non-zero weight,

even if it appears in every trace in the training set X .

Chapter 4: Feature Extraction 4.3 Feature scaling

53

4.3.2 Unit-magnitude scaling

TF-IDF transformation addresses the issue of the varying orders of magnitude of the feature data

using logarithmic frequency and IDF transformation. However, many machine learning algorithms

(such as SVM and LR) perform best when operating on more rigidly scaled features. To address

this issue, the TF-IDF transformed vectors are scaled to unit magnitude. For this work, both the

L1 (Manhattan) and L2 (Euclidean) norms are considered. Scaling to unit magnitude was chosen

over alternatives, such as rescaling or standardization, because it preserves the scale relationships

among the system calls. Thus, the complete feature scaling process, where ‖ · ‖ indicates either the

L1 or L2 norm, is

xs =
TF-IDF(x,X)

‖TF-IDF(x,X)‖
. (4.6)

4.4 Feature reduction

Feature reduction shares a common goal with feature selection; namely, to reduce the overhead of

the system. While feature selection accomplishes this by removing uninformative features, feature

reduction does so by identifying a non-redundant feature set. Feature reduction also has the benefit

of reducing the effect of the so-called curse of dimensionality, which refers to the diminished effec-

tiveness of certain machine learning algorithms in high-dimensional spaces [113]. This work considers

two approaches to dimension reduction, singular value decomposition (SVD) and linear discriminant

analysis (LDA). SVD is a matrix factorization algorithm, similar to principal component analysis

(PCA), that is used to project the features onto a lower dimensional feature space. The feature

space is selected such that the resulting features are uncorrelated. LDA also projects the features

onto a lower dimensional space. For LDA, the feature space is selected to maximize the distance

between training instances of different classes. Both SVD and LDA require training to determine

the appropriate feature projections.

4.4.1 Truncated singular value decomposition (SVD)

Truncated SVD is a matrix factorization used here to project feature vectors x onto a lower dimen-

sional space [114]. In the context of document classification when used with word frequencies, it is

Chapter 4: Feature Extraction 4.4 Feature reduction

54

also referred to as latent semantic analysis (LSA). For training, SVD considers the matrix X, formed

by horizontally concatenating all of the feature vectors xi in the training set X ,

X =

[
x1 x2 ... xN−1 xN

]
, where xi ∈ X . (4.7)

The rank of the matrix X (i.e., the maximum number of linearly independent feature vectors

that can be found in X) is r. The truncated SVD algorithm uses matrix factorization techniques to

find an approximation Xk of X. The subscript k indicates that Xk is the rank k approximation of

X, where k ≤ r. The truncated SVD of rank k of X is

Xk = UkΣkV
T
k . (4.8)

Here, Σk is a k×k diagonal matrix formed from the square roots of the k largest nonzero eigenvalues

of XXT (or equivalently of XTX), Uk is composed of the corresponding orthogonal eigenvectors of

XXT , and Vk is composed of the corresponding orthogonal eigenvectors of XTX. The truncated

SVD contrasts with the standard SVD, which considers all r nonzero eigenvalues of XXT . It is used

here instead of the standard SVD to further reduce the number of dimensions. Given the rank k

decomposition of X, a feature vector x can be projected to a k-element feature vector xk using the

transformation

xk = ΣkU
T
k x (4.9)

Truncated SVD is effective because the smallest values in Σk do not significantly affect the matrix

product Xk. Therefore, if only the smallest values are removed, Xk remains a close approximation for

X. The value k must be carefully chosen to appropriately reduce redundancy without significantly

reducing the discriminability afforded by the original feature set. The value of k is commonly selected

experimentally or so that the selected projection retains a fixed percentage of the variance in X.

The motivation for using truncated SVD for feature selection is two-fold. First, it has an ad-

vantage over other similar techniques, such as PCA, because it works well with high-dimensional,

Chapter 4: Feature Extraction 4.4 Feature reduction

55

sparse datasets. Second, when provided with appropriately scaled inputs – e.g., the vectors output

by the feature scaling component described in the preceding section – the distribution of the result-

ing features are approximately Gaussian. Transforming the data to a set of Gaussian-distributed,

non-redundant features is especially useful for applying techniques such as LDA, described in the

following section.

4.4.2 Linear discriminant analysis (LDA)

LDA is a generalization of Fisher’s Linear Discriminant, and is useful for both feature reduction

and classification [113]. Whereas SVD transforms the feature data to eliminate redundancy, LDA

considers the class labels and transforms the data to separate the instances of different classes. LDA

assumes the class-conditional distribution of the features to be Gaussian and requires non-redundant

input features. Therefore, LDA is only applied to the SVD-transformed feature vectors xk. LDA

seeks a k′×k matrix W that projects xk onto a space of k′ features that maximize the between-class

separation of the projected data. The projection is given as

xk′ = Wxk (4.10)

where

k′ ≤ min(k,K − 1) . (4.11)

LDA is not particularly useful for the binary detection task, since a single dimension cannot be

reliably used to differentiate between malicious and benign processes. However, it is useful in for

classification, where the number of classes – and therefore the number of dimensions of the projected

data – is much larger. It is especially useful for classification techniques that work well with smaller

feature sets, such as nearest neighbor methods.

During training, the matrix W is selected to maximize the between-class covariance and minimize

with within-class covariance of the data in the projected space. It is computed using a training set

X of N traces, wherein the traces are partitioned into K classes, denoted as the sets Ck. The

between-class covariance of the projected data, where Nk is the number of training instances that

Chapter 4: Feature Extraction 4.4 Feature reduction

56

belong to class k, µk is the mean of class k, and µ is the mean of all the data, is

sB =

K∑
k=1

Nk(µk − µ)(µk − µ)T . (4.12)

The within-class covariance of the projected data is

sW =

K∑
k=1

∑
xk′∈Ck

(xk′ − µi)(xk′ − µi)
T . (4.13)

Given these two expressions, the matrix W is selected to maximize the multi-class Fisher criterion

J(W), where Tr(·) indicates the matrix trace operation,

J(W) = Tr(s−1
W sB) . (4.14)

The Fisher criterion varies inversely with the within-class covariance and proportionally with the

between class covariance. Thus, finding the projection W that maximizes the Fisher criterion deter-

mines a feature space wherein data from similar classes are clustered together and separated from

those of differing classes.

4.5 Feature extraction evaluation

This chapter presented feature extraction as a four-step process containing information retrieval,

feature selection, feature scaling, and feature reduction steps. With the exception of information

retrieval, all of these steps include a training component, wherein labeled training data are used to

determine the parameters of the transformation. In practice, these parameters are learned using

the same set of training data used to train the malware detectors and classifiers described in the

following chapters. The parameters learned during training are used to transform the data during

testing.

One of the contributions of this thesis is the analysis of the effects feature extraction has on mal-

ware detection and classification accuracy (Sections 5.4.2 and 6.3.2). Combinations of the described

techniques and parameters are used for feature extraction, and their effectiveness is characterized by

Chapter 4: Feature Extraction 4.5 Feature extraction evaluation

57

the accuracy of the detectors and classifiers with which they are used. The combination techniques

and parameters that afford the highest detection and classification accuracy are chosen for use in

the overall malware detection and classification system.

Chapter 4: Feature Extraction 4.5 Feature extraction evaluation

58

Chapter 5: Malicious Process Detection

This chapter addresses the second major challenge of this thesis, the detection of malicious processes.

The three primary challenges in malicious process detection are

• differentiating between malicious and benign processes on production hosts in real-time;

• detecting malicious processes as quickly as possible, to mitigate adverse effects of executing

malware; and

• achieving a low enough false positive rate (FPR) to facilitate production deployment of the

detection system.

Section 5.1 addresses the first challenge by identifying machine learning and signature-based tech-

niques that are ‘lightweight’ enough to use for online detection. The chosen techniques were selected

for their low computational complexity during detection and their previously demonstrated effec-

tiveness in both document classification and malware detection. Section 5.2 addresses the second

challenge by providing sequential detection techniques that can be used for rapid malware detection.

The remaining sections address the third challenge by providing experimental evaluation and com-

parison of the detection algorithms described in this chapter and the feature extraction techniques

described in Chapter 4. Section 5.3 describes detector evaluation techniques, Section 5.4 presents the

experimental results, and Section 5.5 presents a case study wherein the described detection system

was used to detect malicious processes in public computer laboratories.

5.1 Malware detection algorithms

This study considers four different techniques for malicious process detection:

• a signature-based detector (Section 5.1.1),

• a multinomial log-likelihood ratio test (LLRT) (Section 5.1.2),

59

• support vector machines (SVMs) (Section 5.1.3), and

• logistic regression (LR) (Section 5.1.4).

Each technique is used in a supervised learning context, wherein the models used for detection are

learned from labeled training data. The labeled training data consist of system call traces collected

from known malicious and benign processes. Each technique includes a training algorithm and a

testing algorithm. The training algorithm is used for model creation and the testing algorithm is

used for model evaluation.

The four techniques offer different approaches to detection. The signature-based detector iden-

tifies potential malware by comparing observed system call n-grams to a set of known malicious

n-grams. The log-likelihood ratio test (LLRT) models the class-conditional probability distributions

of the training data, and uses the models to compute the probability that the feature data come

from a malicious process. Finally, the support vector machine (SVM) and logistic regression (LR)

are linear detectors that represent the training data in Euclidean space. SVMs seek a hyperplane

to linearly separate the data, and LR develops a model to compute the probability a process is

malicious.

5.1.1 Signature-based detector

Signature-based detection techniques are especially popular in the related work in intrusion detec-

tion, where anomalous system call sequences are used to identify potential intrusions (Section 2.1.3).

Signature-based techniques are popular because of the white-box models they provide. That is, a

positive detection can be directly attributed to specific events. For example, when a malware sam-

ple is detected using the signature-based detector described in this work, the specific n-grams that

caused the positive detection are easily identified. This study considers a signature-based detector

that identifies potential malware by comparing the n-grams in a system call trace to a set of malware

signatures, i.e., a set of n-grams previously seen only in known malware. Unlike the other detectors

presented in this chapter, the signature-based detector uses only information retrieval for feature

extraction. n-gram frequency vectors.

Chapter 5: Malicious Process Detection 5.1 Malware detection algorithms

60

The signatures are created by considering a training set X of feature vectors x̂ extracted from

known malicious and benign processes. The vectors are partitioned into two sets, those collected from

benign processes XB, and those collected from malicious processes XM. The signatures are created

by identifying the set of features present in XM but not in XB. The signatures are represented by a

binary vector s that indicates which of the n-grams are members of the signature set. The vector

s is defined as the following, where si and x̂i are the ith components of the signature vector s and

feature vector x̂,

si =


1, if

(∑
x̂∈XM

x̂i

)
> 0 and

(∑
x̂∈XB

x̂i

)
= 0,

0, otherwise.

(5.1)

For detection, the signature detector computes the number of system calls in a trace that match

signatures of known malware, and compares the result to a threshold λ. The detector labels a process

with a feature vector x̂ malicious if

sT x̂ > λ . (5.2)

The threshold λ is chosen experimentally to fine-tune the detector performance. While the advan-

tages of the signature-based detector are the simplicity of its training and testing algorithms and its

white-box model, its weakness is its simplistic characterization of malicious behavior that does not

generalize well to new malware samples and its tendency to overfit the training data.

5.1.2 Multinomial log-likelihood ratio test (LLRT)

The näıve multinomial LLRT is a statistical test used in document classification [115]. It operates

on discrete-valued, non-negative feature data, such as the n-gram frequencies and term frequency –

inverse document frequency (TF-IDF) transformed feature data considered in this study. It mod-

els the class-conditional distributions of the feature data using a categorical distribution model,

assuming conditional independence of the features. It is desirable due to the simplicity of its train-

ing and detection algorithms and can provide useful detection results even when the independence

assumption does not hold.

During training, the algorithm estimates the class-conditional probability distributions of each

Chapter 5: Malicious Process Detection 5.1 Malware detection algorithms

61

feature x̂i from the training data. In this study, the probability distribution of the ith feature is

described as the probability that the random variable (r.v.) X̂i corresponding to the ith feature

takes on the value x̂i. The class-conditional distributions of the training data are represented as

pX̂i|M (x̂i) for the malicious processes and pX̂i|B(x̂i) for the benign processes. For each possible value

x̂i, the probability density function pX̂i|M (x̂i) is estimated from the training data as the fraction

of total malware training instances for which the r.v. X̂i takes on the value x̂i. That is, given

NM = card(XM),

pX̂i|M (x̂i) =
1

NM

∑
x̂∈XM

1X̂i=x̂i
(5.3)

The probabilities pxi|B(xi) are similarly computed from the benign training data. Given a feature

vector x̂, detection is performed by computing the likelihood ratio

Λ =
pX̂|M(x̂)

pX̂|B(x̂)
(5.4)

The conditional independence assumption enables the probabilities pX̂|M(x̂) and pX̂|B(x) to be rep-

resented as the product of the marginal probabilities pX̂i|M (x̂i) and pX̂i|B(x̂i), respectively. Given m

as the total number of features, the detector performs a log-likelihood ratio test, wherein a process

is labeled malicious if
m∑
i=1

log

(
pX̂i|M(x̂i)

pX̂i|B(x̂i)

)
> λ. (5.5)

The detection threshold λ can be chosen under the Bayes criterion, based on error costs and prior

probabilities; or under the Neyman-Pearson criterion, by maximizing the true positive rate (TPR)

under a FPR constraint [116]. This work uses the latter approach, since prior probabilities that a

process is benign or malicious are in general not known.

The multinomial LLRT detector works with the TF-IDF transformed n-gram frequencies because

they are positive and discrete-valued. However, it does not work with feature extraction techniques

such as singular value decomposition (SVD) or linear discriminant analysis (LDA), which result in

feature data that can be approximated with a Gaussian distribution model. In such cases, the LLRT

can be used with Guassian marginal distributions. Here, the class-conditional marginal distribution

Chapter 5: Malicious Process Detection 5.1 Malware detection algorithms

62

of ith feature for the malicious processes is

pX̂i|M(x̂i) =
1

σi
√

2π
exp

(
−(x̂i − µi)

2

2σ2
i

)
, (5.6)

where µi is the maximum likelihood estimator of the mean of the training data,

µi =
1

NM

∑
X
x̂i , (5.7)

and σ2
i is the the maximum likelihood estimator of the standard deviation of the training data,

σ2
i =

1

NM

∑
X

(x̂i − µi)
2
. (5.8)

The marginal probabilities pxi|B(xi) are similarly computed from the benign training data.

The LLRT detector is advantageous because its output probabilities can be used with sequential

detection [117] or data fusion techniques [118] that require probabilities of observations as input.

However, it is limited by its independence assumption, assumed marginal probability distributions,

and tendency to overfit the training data.

5.1.3 Linear support vector machines (SVMs)

Linear SVMs seek a hyperplane wT x̂ that optimally separates data points of two different classes.

The parameters w defining the hyperplane are learned from labeled training data. Detection is

performed on a feature vector x̂ by comparing the weighted sum wT x̂ to a threshold. A process is

labeled malicious if

wT x̂ > λ . (5.9)

In this work, the parameters w are calculated using stochastic gradient descent (SGD). SGD is

an optimization algorithm well suited to large-scale learning problems such as this, where both the

number of training instances and the number of features is very large, and the data are sparse [119].

The objective function SGD seeks to minimize is given in terms of the feature vectors x̂i and their

Chapter 5: Malicious Process Detection 5.1 Malware detection algorithms

63

corresponding labels yi ∈ {−1, 1}, where yi = 1 for malware traces and yi = −1 for benign software

traces. The objective function considers a regularization constant α, and a loss function L. The

regularization constant penalizes high model complexity, and the loss function penalizes detection

errors during training. Soft margin SVMs are used in this work, which allow for detection errors

during training. The advantage of using soft margin SVMs is that they allow for mislabeled training

data and are less sensitive to outliers than the hard-margin implementation. For soft margin SVMs,

the loss function L is the Hinge Loss,

L(t, y) = max(0, 1− ty) , (5.10)

and objective function is

E(w) =
1

N

N∑
i=1

L(yi,w
T x̂i) + α‖w‖2 . (5.11)

SGD approximates the gradient of E(w) by randomly iterating over the training data X and

considering each training vector x individually. The training algorithm makes a fixed number of

passes over the training data to arrive at an estimated solution for w. The complexity of the SGD

training algorithm for n > 1 is O(NPl), where N is the number of training samples, P is the

number of passes, and l is the number of system calls in a trace. For each training sample, the SGD

training algorithm updates the weights considering an adaptive learning rate ηt, which determines

the contribution of each estimated gradient to the feature weights. In this study, ηt is gradually

decaying. Given an initial value t0 and the current training iteration t, the learning rate is

ηt =
1

α(t0 + t)
(5.12)

The weights w are updated according to the approximate gradient and learning rate as

wt+1 = wt − ηt
(
∂L(yi,w

T x̂i)

∂w
+ α

∂(‖w‖2)

∂w

)
, (5.13)

where i = tmodN and the ordering of the training samples in X is randomized between passes.

Chapter 5: Malicious Process Detection 5.1 Malware detection algorithms

64

The SVM detector is advantageous because it does not operate on the same restrictive assump-

tions as the LLRT regarding the distribution and independence of the feature data. Instead, the SVM

detector assumes that the data are linearly separable. Furthermore, the SGD training algorithm

is advantageous because it works well with large numbers of training instances, high dimensional

datasets, and sparse datasets. Since it operates on training vectors individually, the SGD algorithm

enables the weights w to be updated as more training instances become available. This is advanta-

geous because the models are expected to require retraining to account for changes in both benign

and malicious software.

5.1.4 Logistic regression (LR)

Logistic regression (LR) is closely related to SVM, but instead of seeking a separating hyperplane,

LR provides a model for estimating the probability that a process is malicious or benign [120]. LR is

desirable because its probability estimates can be used with sequential detection [117] or data fusion

techniques [118] that require probabilities of observations as input. The objective function for LR

is the same as expression 5.11, using logarithmic loss instead of Hinge loss,

L(t, y) = log (1 + exp (−ty)) . (5.14)

The feature weights w can be used to compute the probability that a process is malicious as

pM(x̂) =
1

1 + e−(wT x̂)
, (5.15)

and the probability that a process is benign as

pB(x̂) = 1− pM(x̂) . (5.16)

A process is labeled malicious if the log-likelihood ratio of these quantities exceeds a threshold,

log

(
pM(x̂)

pB(x̂)

)
> λ . (5.17)

Chapter 5: Malicious Process Detection 5.1 Malware detection algorithms

65

5.2 Sequential malware detection

Sequential detection, also known as sequential hypothesis testing, is the process of performing de-

tection when the sample size is not known in advance. For malware detection, the sample size is l,

the length of the system call traces. The detection algorithms described in the preceding sections

assume that the trace length is fixed and perform detection when exactly l system calls have been

observed. A sequential detector operates as the traces are collected and makes a decision when there

is sufficient evidence to support the decision.

The motivation for using sequential detection techniques here is two-fold. First, they enable

more rapid detection of malicious processes than is possible with fixed sample size techniques. This

is useful to minimize the adverse effects of executing malware. Second, they enable the detection

of changes in the behavioral characteristics of a process. This is important for detecting so-called

latent malware, which only exhibit malicious behaviors when certain conditions are met. Further-

more, sequential detection techniques potentially can be used to detect intrusions, exploitation, code

injection, and other malicious behaviors that occur in already-executing processes. This section de-

scribes adaptations of two different sequential detection techniques, Wald’s sequential probability

ratio test (SPRT) and Page’s cumulative sum (CUSUM) test, to the malware detection problem.

Each sequential detection technique is used together with the LR detector described in the preceding

section.

5.2.1 Wald’s sequential probability ratio test (SPRT)

The sequential detection problem was formulated by Abraham Wald [117] as a simple binary hypoth-

esis testing problem. Given a sequence of independent, identically distributed (i.i.d.) realizations

〈z1, z2, z3, ...〉 of a r.v. Z, either hypothesis H0 or H1 is true

H0 : 〈z1, z2, z3, ...〉
i.i.d.∼ p0

H1 : 〈z1, z2, z3, ...〉
i.i.d.∼ p1 .

(5.18)

Chapter 5: Malicious Process Detection 5.2 Sequential malware detection

66

That is, the realizations 〈z1, z2, z3, ...〉 are either drawn from a probability distribution p0 or p1.

The goal is to identify which alternative is true as quickly as possible, subject to TPR and FPR

constraints. The SPRT uses a sequential probability ratio Λi as a decision statistic. The ratio Λi is

defined recursively, where Λ0 = 0, as

Λi = Λi−1 ×
p1(zi)

p0(zi)
(5.19)

Whereas the fixed sample size detection algorithms described previously in this chapter each con-

sidered a single decision threshold λ, Wald’s SPRT considers two decision thresholds, λ1 and λ0. At

each iteration, one of the following actions is taken.

• If Λi > λ1, stop and declare H1 to be true.

• If Λi < λ0, stop and declare H0 to be true.

• Otherwise, continue.

The thresholds are chosen to achieve a desired FPR and TPR. Conservative choices for the thresholds

are

λ1 =
TPR

FPR
,

λ0 =
1− TPR

1− FPR
.

(5.20)

The present problem of sequential malware detection has two primary differences from the se-

quential detection problem posed by Wald. First, the two detection algorithms that provide proba-

bilities as output (LR and the LLRT) are machine learning algorithms operating on high-dimensional

datasets and not simple binary hypothesis tests. Second, each new data sample in the malware de-

tection problem is a new system call n-gram, and not an independent realization of a r.v. The

first difference necessitates the experimental determination of the decision thresholds λ0 and λ1,

since expression 5.20 was derived from the assumption that a simple binary ratio test was being

performed. The second issue is addressed by performing block-wise feature extraction on the system

call traces, using a fixed block size lb. For example, a trace containing 1500 calls can be viewed

Chapter 5: Malicious Process Detection 5.2 Sequential malware detection

67

instead as a sequence of 15 disjoint traces of length lb = 100. The complete sequential malware

detection procedure using Wald’s SPRT is described by the following steps.

1. Collect lb system calls.

2. Perform feature extraction on the system calls to determine x̂i

3. Perform detection on x̂i using LR.

4. Compute the sequential probability ratio in expression 5.19.

5. Perform the two threshold tests.

6. If no decision has been made, repeat.

The procedure is repeated until one of the two alternatives is chosen, i.e., the process is declared

‘benign’ or ‘malicious’.

5.2.2 Page’s cumulative sum (CUSUM) test

Wald’s SPRT begins when a process is created and terminates when the process is determined to

be benign or malicious. Since the detector makes only a single decision and bases it only off of the

beginning of a process’s execution, a malicious process could evade detection by initially behaving

like a benign process. This type of attack, known as a mimicry attack, could similarly be used

against any of the fixed sample size tests described in the previous section, which operate only on

the first l calls in each system call trace.

This section considers an alternative sequential test chosen to address the concern that malware

might evade detection by delaying their malicious functions. Page’s CUSUM test, originally de-

scribed as a method for detecting faults in industrial processes, formulates the sequential detection

problem as a quickest change-point detection problem [121]. The goal in change-point detection is

to detect an abrupt change in a process. Whereas the goal in Wald’s SPRT is to determine whether

a sequence 〈z1, z2, z3, ...〉 is drawn from a distribution p0 or p1, the goal in Page’s CUSUM test is to

identify if and when the distribution of the realizations zi change from p0 to p1.

Chapter 5: Malicious Process Detection 5.2 Sequential malware detection

68

Page’s CUSUM test uses the same decision statistic as the SPRT, the recursively defined cumu-

lative likelihood ratio defined in expression 5.19. However, instead of setting two fixed thresholds,

the CUSUM test uses a single adaptive threshold. The intuition behind Page’s CUSUM test is that

as long as H0 is more likely, the ratio

p1(zi)

p0(zi)
(5.21)

will tend to be less than 1, whereas it will tend to be greater than 1 if H1 is more likely. The test

decides H1 to be true if a significant increase in Λi is observed. At each iteration, the CUSUM test

takes one of the two following actions.

• If Λi −min
j≤i

(Λj) > λ, stop and declare H1 to be true.

• Otherwise, continue.

Page’s CUSUM test does not terminate until the hypothesis H1 is determined to be true. Thus,

when used for sequential malware detection, the CUSUM test continues to monitor every process

until malicious behavior is detected or until the process terminates. For malware detection, the

CUSUM test is used together with the LR detector, similar to the approach taken with Wald’s

SPRT. The CUSUM test is performed block-wise and the detection threshold λ is determined ex-

perimentally.

5.3 Malware detector evaluation

This chapter presented four detection algorithms and two sequential detection procedures for iden-

tifying malicious processes. To determine the effectiveness of these detection techniques, each was

experimentally evaluated against system call traces collected from production environments and

from recently discovered malware samples. This section describes the performance measures and

cross-validation techniques used to evaluate the described malware detectors.

5.3.1 Detector performance measures

Detection performance is studied primarily in terms of two values,

Chapter 5: Malicious Process Detection 5.3 Malware detector evaluation

69

False positive rate (FPR): the fraction of benign processes incorrectly identified as malware;

and

True positive rate (TPR): the fraction of malware samples correctly identified as malware.

While the FPR is defined in terms of the processes, the TPR is defined in terms of malware samples.

This distinction is made because the number of processes created by the malware samples in this

study varied significantly, with some samples creating thousands of processes and others creating

only one. Presenting the TPR in terms of malware samples prevents malware samples composed of

many processes from biasing the results.

The receiver operating characteristic (ROC) curve of a detector is a plot of the detector’s TPR

versus its FPR, created by varying the detection threshold λ and plotting the TPR and FPR achieved

at each threshold. The ROC curve depicts the trade-off between the TPR and the FPR of a detector.

The area under the curve (AUC) of the ROC can be used to quantify the overall accuracy of a

detector. A perfect detector has an AUC of 1, whereas a detector that makes decisions randomly

has an AUC of 0.5.

This study focuses primarily on detector performance under specific FPR and TPR constraints,

as indicated by Neyman-Pearson lemma [116]. In particular, this study presents the maximum TPR

achieved by a detector at a fixed FPR. This study focuses on the maximum TPR that a detector

can achieve at a FPR below 10−5. For the data used in this study, a FPR of 10−5 corresponds to

approximately one false positive every 17.5 host-days.

The sequential detection algorithms are evaluated in in terms of their FPR, TPR, and average

detection delay (ADD), which can be tuned by adjusting the detection thresholds. Here, the ADD

is the average delay between the start of a process and a decision being made by the detector. The

ADD is measured as the average number of system calls observed by the detector before a decision

is made.

Chapter 5: Malicious Process Detection 5.3 Malware detector evaluation

70

5.3.2 Cross-validation

Cross-validation is a model validation technique used to assess the effectiveness of the detection

techniques described in this chapter and the classification techniques presented in the next chapter.

Cross-validation is the process of partitioning a dataset into complementary subsets, using one subset

for training and the other for testing. Cross-validation is useful for assessing how a detector will

perform against an independent dataset.

In this work, cross-validation is performed by splitting the data into training and testing sets

along dataset boundaries. That is, the training-testing splits never occur within a set of traces

collected during the same System Call Service (SCS) data collection session. This partitioning

scheme ensures that the set of malware samples represented in the training and testing sets are

always disjoint, i.e., detection accuracy is only evaluated against a different set of malware samples

than are is for training.

Ten-fold cross-validation was used to obtain the results presented in this thesis. In 10-fold cross

validation, the data are partitioned into ten subsets. At each cross-validation fold, one subset is

chosen as the testing set, and the remaining nine are used for training. The results of 10-fold

cross-validation are presented in terms of the mean performance achieved across the cross-validation

folds. The measurements of the performance of a detector across 10 folds are represented as Z =

{z1, z2, ..., z10}. In the following section, the average performance is presented along with its standard

error, the standard error of the mean (SEM), where σZ is the variance of Z,

SEM(Z) =
σZ√
10
. (5.22)

In discussions of significance in the analysis of the detection results, an independent two-sample

t-test is used to assess whether differences in performance are statistically significant. The two-

sample t-test computes the t statistic from two sets of measurements, Z1 and Z2 as the following,

Chapter 5: Malicious Process Detection 5.3 Malware detector evaluation

71

where µZi and σ2
Zi

are the mean variance of the ith set,

t =
µZ1
− µZ2√

1
2

(
σ2
Z1

+ σ2
Z2

)√
2
10

. (5.23)

In this thesis, results are evaluated to a 5% significance level, i.e., a difference is considered statis-

tically significant when the p-value of the t-test is below 5%.

5.4 Experimental malware detection results

The detection results presented in this section are presented primarily in terms of the TPR achieved

by the detectors at a fixed FPR of 10−5. The results were achieved through cross-validation per-

formed on the data collected from the home and campus environments, and from the malware

testbed. Among the experimental results described in this section are

• a comparison of the four detection algorithms (Section 5.4.1),

• a comparison of the feature extraction techniques (Section 5.4.2),

• a detailed analysis of the most informative n-grams (Section 5.4.3),

• a study of the effects of drift on detection (Section 5.4.6), and

• a study of the accuracy of the detector against specific malware families (Section 5.4.7).

The experimental results presented in this section are used to identify the algorithms and parameters

that provide the highest detection accuracy.

5.4.1 Detector, n-gram length, and trace length comparison

This section explores of the effects of three parameters on detection accuracy,

• the chosen detection algorithm,

• the length n of the system call n-grams, and

• the length l of the system call traces.

Chapter 5: Malicious Process Detection 5.4 Experimental results

72

This study compares the performance of each of the four detection algorithms described in Sec-

tion 5.1, the LR, SVM, signature-based (SIG), and multinomial LLRT detection algorithms. With

the exception of the signature-based detector, the following feature extraction strategy was used:

• ordered n-grams of lengths n ∈ {1, 2, 3, 4, 5};

• system call traces of lengths l ∈ [100, 1500];

• logarithmic n-gram frequencies;

• inverse document frequency (IDF) transformation; and

• L2 normalization (for the SVM and LR detectors only).

For the signature-based detector, none of the feature transformations were applied.

The above feature selection strategy was not chosen arbitrarily, but rather selected through an

iterative experimental process used to determine the best combination of feature selection param-

eters. However, since the selection of feature extraction strategies, trace lengths, n-gram lengths,

and detectors are inherently coupled, the experimental results of this process are presented here to

narrow the scope of the results in the following section to a single detector and n-gram length.

Figure 5.1 provides the experimental results of this analysis. The figure includes five plots, one

for each value of n ∈ {1, 2, 3, 4, 5}. Each plot shows four traces, one for each of the detectors. The

traces show the TPR of the detector for a fixed FPR of 10−5 versus the trace length l. The four

primary conclusions drawn from the results shown in Figure 5.1 are summarized below.

First, system call frequencies alone are insufficient for the detection of malicious pro-

cesses. The first plot in Figure 5.1 shows the detection results when n = 1. The 1-gram represen-

tation of a system call trace describes the frequency at which each system call appears in a trace.

The plot shows the signature-based 1-gram detector achieved a TPR of 0 at every trace length. Fur-

thermore, the ROC curve of the signature-based detector (not shown) had an AUC of 0.5, indicating

that it provided no discrimination at all, even at higher FPRs. This result indicates that there are

no system calls that are used exclusively by malware. The other three detectors do provide some

Chapter 5: Malicious Process Detection 5.4 Experimental results

73

0.1

0.3

0.5

0.7

0.9

T
P

R
n = 1

0.1

0.3

0.5

0.7

0.9

T
P

R

n = 2 n = 3

0 500 1000 1500

trace length l

0.1

0.3

0.5

0.7

0.9

T
P

R

n = 4

0 500 1000 1500

trace length l

n = 5

LR

SVM

SIG

LLRT

Figure 5.1: Comparison of the LR, SVM, SIG, and LLRT detectors, comparing performance
for different n-gram lengths and system call trace lengths l, with detector TPRs presented at a
fixed FPR of 10−5

Chapter 5: Malicious Process Detection 5.4 Experimental results

74

discrimination, shown in Figure 5.1 by the nonzero TPR they achieved at higher trace lengths. The

maximum TPR achieved by a 1-gram detector did not exceed 30%, whereas considering any value

of n > 1 provided a TPR that exceeded 90%. Thus, system call n-gram analysis offers much higher

detection accuracy than can be achieved using system call frequencies alone.

The LLRT and signature detectors perform poorly at low FPRs. For n ∈ {1, 2, 3, 4, 5},

both detectors significantly underperformed the LR and SVM detectors. The main drawbacks that

limit the effectiveness of the LLRT detector are the multinomial probability models it uses for de-

tection and its assumption of conditional independence of the features. The multinomial probability

models overfit the training data and do not generalize well to the testing data. Furthermore, con-

ditional independence is not a good assumption for the system call n-gram data. The inclusion

of highly correlated features and uninformative features contributes to its poor detection perfor-

mance. The signature-based detector is also limited by the simplicity of its model. The n-gram

signatures identified during training are mainly artifacts of the individual malware samples and do

not generalize well to detecting other malware samples.

Detection accuracy peaks at a trace length of around 1000 system calls. This effect is

most pronounced for the performance of the LR and SVM detectors for n ∈ {3, 4, 5}. While detection

accuracy generally increases with trace length for l < 1000, increasing l beyond 1000 did not offer

statistically significant increases in detection accuracy. The detector was able to identify the studied

malware samples based on their behavior during their initial phases of execution. The observed

behaviors of the malware samples during their initial execution included

• propagation within a host or over the network;

• ‘phoning-home’ to indicate to a remote server when a new host was compromised;

• modifying the host configurations to hide the presence of malware;

• installing the malware to ensure their permanence;

Chapter 5: Malicious Process Detection 5.4 Experimental results

75

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

n

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

LLRT

LR

SVM

SIG

Figure 5.2: Detector n gram length analysis, showing the maximum TPR observed at FPR =
10−5 for n-gram lengths n ∈ {1, 2, 3, 4, 5}

• disabling security software and other functions that might be used for malware removal or

detection;

• spawning additional malware processes;

• collecting information about infected hosts;

• activating keyloggers, password stealer (PWS), and other spyware components; and

• installing additional malware samples on infected hosts.

Maximum detection accuracy is achieved when n = 3. Figure 5.2 shows the maximum

TPR achieved by each detector at each n value in Figure 5.1. For each value of n, it shows the

maximum TPR achieved at a fixed FPR of 10−5. The figure shows that using n > 3 does not

provide statistically significant improvement in the TPR for the LR or SVM detectors. When n > 3,

both the dimensionality of the data and the number of nonzero features exceed the number of

processes included in the training set. This likely contributes to the overfitting of the detectors to

uninformative features.

Chapter 5: Malicious Process Detection 5.4 Experimental results

76

The detection results presented in this section serve to scope the remainder of the analysis pre-

sented in this chapter. First, only the LR and SVM detectors are considered for the remainder of this

chapter, since these detectors significantly outperformed the LLRT and signature-based detectors.

Since the LR and SVM provided similar results, the remainder of this chapter focuses primarily

of the LR detector. Second, only 3-grams of system calls are considered for the remainder of this

chapter, since values of n > 3 did not offer statistically significant improvement in detector TPR,

but did introduce substantial memory and processing overhead.

5.4.2 Feature extraction comparison

As illustrated in the previous section, feature extraction strategy has a significant effect on overall

detection performance. While the previous section focused on the effects of n-gram and trace length,

this section explores the effects of four additional feature extraction options. These options are

• using (1) L1 or (2) L2 normalization for feature scaling,

• using (F) raw frequencies or (L) logarithmic-frequencies for term frequency (TF) computation,

• using (T) TF transformation alone or (I) TF-IDF transformation, and

• using (O) ordered or (U) unordered 3-grams.

Each of the four techniques is uniquely identified by the single character labels provided in parenthesis

in the list above. In this section, all sixteen possible combinations of these options are compared

for the LR detector, using 3-grams of system calls and a system call trace length of l = 1500.

Figure 5.3 shows the TPR achieved at a fixed FPR of 10−5 for each of the sixteen combinations.

The conclusions drawn from these results are summarized below.

L2 normalization (2) outperforms L1 normalization (1) by a large margin. L1 normal-

ization was considered because of its straightforward interpretation as the relative frequency of

each 3-gram. That is, each feature value represents a fraction of the total 3-grams observed in

the trace. However, such features perform poorly in practice mainly due to the LR training and

Chapter 5: Malicious Process Detection 5.4 Experimental results

77

0.0 0.2 0.4 0.6 0.8 1.0

TPR

2LTU
2LTO
2LIU
2LIO
2FTU
2FTO
2FIU
2FIO
1LTU
1LTO
1LIU
1LIO
1FTU
1FTO
1FIU
1FIO

Figure 5.3: Detector feature extraction comparison, showing TPR achieved at FPR=10−5 for
the feature extraction strategies described in Section 5.4.2

testing algorithms, which perform better with L2 normalized features. These results are also consis-

tent with results from document classification, which indicate that the L2 norm provides superior

performance [122].

When the L2 norm (2) is used, Logarithmic frequencies (L) outperform raw frequencies

(F) by a large margin. As with words in text documents, the system call n-gram frequencies in

this study scale to different orders of magnitude [122]. This problem of differing feature scales is the

reason for the comparatively poor performance of the raw frequencies. Although IDF transformation

is used to provide higher weights to rare n-grams, the effect of this transformation alone is not

significant enough to fully overcome the scaling issue. Using logarithmic frequency is a necessary

step to address the issue of feature scale.

The combination of using the L2 norm, logarithmic frequencies, IDF transformation

and ordered n-grams (2LIO) provided the highest detection accuracy. The last four en-

tries in Figure 5.3 provide insight into the effects of IDF transformation and system call ordering.

The results show that ordered n-grams and IDF transformations each outperform their counter-

Chapter 5: Malicious Process Detection 5.4 Experimental results

78

2000 4000 6000 8000 10000

number of features

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
P

R

FPR= 10−5

FPR= 10−6

(a)

100 300 500 700 900 1100 1300 1500

trace length l

0.1

0.3

0.5

0.7

0.9

T
P

R

3000 features

4000 features

5000 features

all features

(b)

Figure 5.4: Feature selection analysis, showing (a) detector TPR vs. number of selected
features and (b) a comparison of three different feature subsets against the set of all features
vs. trace length

parts. However, neither of these parameters in isolation offer statistically significant improvement.

Using both ordered n-grams and IDF transformation does offer significant improvement over using

unordered n-grams and only TF transformation. Thus, the remaining detection results presented in

this chapter all use the 2LIO feature extraction strategy with 3-grams of system calls.

5.4.3 Feature selection

This section focuses on feature selection, the process of identifying the subset of ordered 3-grams

that provide the best overall detection performance. Feature selection is used to mitigate overfitting

and to decrease the overall memory and computational burden of the detection system. Of the

more than 100 million possible ordered 3-grams of system calls, more than 250 thousand distinct

3-grams were present in the system call traces used for feature selection. Feature selection was

performed using recursive feature elimination (RFE) and the LR detector, removing 100 features at

each recursive step.

Figure 5.4a shows the detector TPR at a fixed FPR of 10−5 and 10−6, versus the number of

features chosen using RFE. The TPR increases sharply as the number of features increases to around

1,000. After then, there is no statistically significant change in the TPR achieved by considering

Chapter 5: Malicious Process Detection 5.4 Experimental results

79

Table 5.1: System calls present in the selected feature set of 4,000 3-grams

Category Calls Examples
Atoms 4 NtAddAtomEx, NtFindAtom
Boot 2 NtModifyBootEntry, NtAddBootEntry
Debuging 8 NtSystemDebugControl, NtDebugActiveProcess
Device driver control 1 NtUnloadDriver
Environment settings 9 NtSetSystemInformation, NtSetDefaultLocale
Error handling 3 NtRaiseHardError, NtRaiseException
Files and general I/O 29 NtReplacePartitionUnit, NtLockFile
Jobs 4 NtTerminateJobObject, NtAssignProcessToJobObject
local procedure call (LPC) 16 NtCreatePort, NtSecureConnectPort
Memory 17 NtWriteVirtualMemory, NtQueryVirtualMemory
Miscellaneous 36 NtQuerySystemInformation, NtQueryLicenseValue
Objects 12 NtQueryObject, NtSetInformationObject
Plug and play 4 NtPlugPlayControl, NtPlugPlayGetDeviceProperty
Power management 3 NtSetSystemPowerState, NtIsSystemResumeAutomatic
Processes and threads 31 NtQueryInformationProcess, NtOpenProcess
Processor Information 1 NtSetLdtEntries
Registry 24 NtSetValueKey, NtNotifyChangeKey
Security 23 NtImpersonateThread, NtSetSecurityObject
Synchronization 18 NtCreateMutant, NtCreateSemaphore
Timers 8 NtQueryPerformanceCounter, NtCreateTimer

additional features. The maximum average TPR in Figure 5.4a occurs at 3,000 features. The

detection performance achieved using the same set of 3,000 features is presented in Figure 5.4b for

system call trace lengths l ∈ [100, 1500]. The figure shows the TPR of the detector at a fixed FPR

of 10−5 versus the trace length l. It compares the performance of the detectors using sets of 3,000,

4,000, and 5,000 features to the performance of the detector using all of the features. The 3,000-

feature detector significantly underperforms detector using all the features for certain system call

trace lengths, including l = 500 and l = 700. However, the detector using 4,000 features achieves

comparable detection performance to the detector using all the features for every considered trace

length. The set of 4,000 features was chosen over the set of 3,000 because it provided comparable

performance at l = 1500 and better performance at shorter trace lengths.

Of the 465 system calls monitored by the SCS, 253 distinct calls were present in the chosen set

of 4,000 features. The selected calls are summarized in Table 5.1, which shows the categories of the

calls, the number of calls in each category, and example calls from each category. Every one of the

system call categories presented in Section 1.3 is represented in the chosen feature set. Similarly,

Chapter 5: Malicious Process Detection 5.4 Experimental results

80

every category is also represented in the set of features that were not chosen. Therefore, no single

class or even collection of system call classes provide the discrimination between malware and benign

software.

The chosen 3-grams also illustrate the range of functionality covered by the selected features.

Some of the selected 3-grams contained system calls from multiple categories, such as

• 〈NtOpenKeyEx, NtSetInformationProcess, NtTraceControl 〉;

• 〈NtRegisterProtocolAddressInformation, NtResumeThread, NtSetSystemPowerState 〉; and

• 〈NtTerminateThread,NtRenameKey,NtDeleteWnfStateData 〉.

Other selected 3-grams were composed of calls only from a single category, such as

• 〈NtOpenKeyEx, NtQueryKey, NtEnumerateKey 〉 (Registry);

• 〈NtQueryAttributesFile, NtOpenFile, NtLockFile 〉 (Files and general I/O);

• 〈NtTerminateThread, NtTerminateThread, NtSuspendThread 〉 (Processes and threads);

• 〈NtAccessCheckByType, NtAccessCheckByType, NtAccessCheckByType 〉 (Security); and

• 〈NtReplyWaitReceivePortEx, NtAlpcConnectPort, NtAlpcSendWaitReceivePort 〉 (LPC).

The results of the feature selection study presented in this section indicate that there are no sim-

ple, intuitive rules for selecting informative n-grams, and that feature selection should be performed

empirically. Some approaches in the related work have considered only system call features that seem

intuitively informative, such as filesystem, registry, and security-related system calls. However, the

results presented here indicate that all categories of system calls are informative for malware detec-

tion. Finally, there are significant gains in terms of memory and processing overhead in collecting

and processing only the most informative n-grams. Feature selection reduced the feature space from

over 100 million features to only 4,000 features.

Chapter 5: Malicious Process Detection 5.4 Experimental results

81

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

regularization parameter α

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

SVM

LR

Figure 5.5: Regularization analysis, showing the TPR achieved at FPR=10−5 for the SVM
and LR detectors for a range of regularization parameters α

5.4.4 Regularization

The optimization problem solved during training for both SVM and LR, shown in expression 5.11

in Section 5.1.4, includes a parameter α, a regularization constant that penalizes high model com-

plexity. The regularization constant penalizes the norm of the feature weights w that compose the

model. Figure 5.5 presents the accuracy of the LR and SVM detectors for a range of regularization

parameters, showing the TPR of the detectors at a fixed FPR of 10−5. In general, the TPR decreases

as the regularization parameter α increases, indicating that the detectors benefit from the discrim-

inability afforded by the higher model complexity. Provided α falls within the range [10−9, 10−7],

the LR and SVM detectors offer comparable detection performance.

5.4.5 Block-wise detection performance

The detector comparison in Section 5.4.1 indicated that all of the detectors perform relatively poorly

for small trace lengths. This observation raises the question: Is the poor performance at small trace

lengths an artifact of the relatively small sample size, or is it caused by a lack of discriminatory

information at the beginning of the traces? To address this question, Figure 5.6a presents the block-

Chapter 5: Malicious Process Detection 5.4 Experimental results

82

0 200 400 600 800 1000 1200 1400

offset of system call block

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
P

R
FPR=10−3

FPR=10−4

FPR=10−5

(a)

100 300 500 700 900 1100 1300 1500

trace length l

0.1

0.3

0.5

0.7

0.9

T
P

R

skip first 100

use all data

(b)

Figure 5.6: (a) Block-wise detection analysis, showing LR TPR for blocks of 100 system calls
beginning at the specified offsets and (b) a comparison of the LR detector TPR at a fixed FPR
of 10−5 when all data are used and when the first 100 calls are ignored

wise detection performance of the LR detector for blocks of 100 system calls. The figure presents

the TPR of the detector achieved for each block at fixed FPRs of 10−5, 10−4, and 10−3. Specifically,

the first point of the plot shows the detection performance when considering only the first block of

100 system calls from each trace, the second point shows the detection performance for the second

block of 100 calls from each trace, and so on.

Figure 5.6a shows comparatively poor performance for the first 100 system calls, especially at

an FPR of 10−3. This observation indicates that the first 100 system calls are not as informative

as the rest of the calls. This is due in large part to the nature of the calls at the beginning of a

processes execution. The calls are mostly related to generic start-up procedures, such as memory

allocation, that are common to all processes. For the same reason, the first ∼ 500 system calls are

also comparatively less informative than the remaining system calls, although this difference is less

pronounced.

Figure 5.6b shows the effects of ignoring the first 100 system calls on detection performance. It

shows the TPR of the LR detector for a fixed FPR of 10−5 versus the trace length. It compares

the case where the first 100 system calls are ignored and the case where all of the system calls are

Chapter 5: Malicious Process Detection 5.4 Experimental results

83

considered for detection. Ignoring the first 100 system calls causes a decrease in accuracy for trace

lengths less than 500. However, for l ≥ 500, the detection accuracy matches the accuracy achieved

when all the data are used. Therefore, the benefit of ignoring the first 100 calls is only that it

slightly reduces the overhead of data collection. It does not provide any benefit in terms of increased

detection accuracy.

5.4.6 Effects of drift

Malware authors are continually creating new malware samples and modifying existing samples to

add new features, fix bugs, and evade detection. Such incremental changes, referred to as drift,

present a challenge for any detector, which must continually adapt to keep up with the changes.

Changes introduced specifically to evade detection or make future evasion easier are referred to

as adversarial drift [123]. The detection results presented so far in this chapter were achieved

using cross validation with randomly determined training-testing splits. While such results provide

a measure of how well the detector performs against an independent dataset, these results have

no chronological meaning. This section presents a study of detector performance that takes into

account the chronological order in which the malware samples were discovered. The objective is to

characterize the effects of drift on detection accuracy.

For this study, the dates the malware samples were first submitted to the free online virus scan-

ning service VirusTotal1 were used as approximate dates of initial discovery. All of the samples were

first discovered between January 2012 and March 2015. Cross-validation was performed according

to the discovery dates. The detector was trained using all of the malware discovered prior to a

chosen date, and testing was performed on the remaining data. Multiple cross-validation folds were

performed by sliding the date of the split over the data set. For example, in the first fold, only

malware samples discovered before 1 January 2013 were used for training, and the remaining data

were used for testing. In the second fold, samples discovered prior to 1 February 2013 were used

for training and the rest for testing. This process was repeated fifteen times, and the results were

averaged over the folds.

1VirusTotal, http://www.virustotal.com

Chapter 5: Malicious Process Detection 5.4 Experimental results

http://www.virustotal.com

84

0 2 4 6 8 10 12

months since training

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

T
P

R

LR

Figure 5.7: Detector TPR at FPR= 10−5 as a function of time since training, showing the
effects of drift on detection accuracy over a 12 month period

Figure 5.7 shows the TPR of the LR detector at a fixed FPR of 10−5 versus the number of months

elapsed since training. The results for month zero show the detection performance achieved using

cross-validation on the training set. The remaining results are determined by binning the malware

according to their month of discovery. The results indicate that detection performance gradually

decreases over time. By 12 months, the TPR has decreased by nearly 6.5%. This gradual decrease

in detection performance is the effect of drift, caused primarily by the introduction of new malware

samples against which the detector performed poorly. The comparatively high standard errors on

the measurements compared to month zero are the result of the relatively small sample sizes for the

individual months compared to the training set. In fact, most of the months prior to June 2014 –

when the malware collection efforts intensified – have fewer than 500 malware samples, while most

of the following months have thousands of malware samples.

It is expected that in a production deployment of the detection system, detection models would

be updated periodically to correct for drift. The updated models would likely be generated off-line

by a third party in a laboratory environment and pushed to clients, similar to the way antivirus

Chapter 5: Malicious Process Detection 5.4 Experimental results

85

(AV) signatures are currently distributed. The models used for the described detection system have

three advantages over traditional malware signatures.

• The models used by the detector are more concise than the large signature databases used in

AV software.

• Whereas AV signature databases are typically updated multiple times per day, the models

used here would require less frequent updates. For example, if the goal is to stay within 2.5%

of peak performance, the models should be updated every three months.

• The models used in this work can be updated using data collected from production hosts,

reducing the burden on the vendor of the updates to run every newly discovered malware

sample in a laboratory environment.

5.4.7 Error analysis

This section identifies the sources of the detection errors, specifically the types of benign software

responsible for the false positives and types of malware responsible for the false negatives. It also

examines the hosts on which the detection errors occurred. The results presented in this section are

those achieved by the LR detector at a FPR of 10−5.

Seven types of benign software applications were responsible for the false positives, particularly:

• a secure erasure utility,

• a disk defragmentation utility,

• the Windows Defender worker process,

• the Windows narrator,

• two strategy games,

• a component of a graphics editing application, and

• a media player application.

Chapter 5: Malicious Process Detection 5.4 Experimental results

86

Table 5.2: ESET family labels of false negatives

category samples
Kryptik 78
Injector 43
AdWare.MultiPlug 36
AdGazelle 28
Softcnapp.C.gen 27
Spy.Banker 24
RiskWare.ShouQu 23
Sality 21
MSIL/Solimba 20
Injector.Autoit 20
Agent 20
AdWare.iBryte 16
Parite 13
Spy.Zbot 12
Sohanad 12
NSIS/TrojanDownloader.Agent 12
MSIL/Kryptik 12
FlyStudio 12
Autoit 12
VB 11

The false positives occurred on six different testbed hosts and one production host. The high

representation of the testbed hosts was caused primarily by the fact that they accounted for a

majority of the collected data. The common feature among the false positives was that they had

relatively low representation in the collected datasets. The cause of the false positives was likely a

lack of training data for similar applications, underscoring the importance of training the detector

with a variety of benign applications to ensure the models cover a wide range of benign behaviors.

With a TPR rate above 98%, the detector provided 1021 false negatives. The false negatives were

studied in terms of their AV labels. According to their Microsoft labels, more than half of the false

negatives were not malicious. Those that were labeled malicious by Microsoft spanned 18 malware

categories and included 106 Trojans, 69 worms, 69 viruses, and 57 Trojan downloaders. According to

their ESET labels, 117 of the false negatives were not malicious. Those that were labeled malicious

by ESET spanned 214 different malware families. Table 5.2 presents the twenty malware families

that appeared most often in the set of false negatives and the number of occurrences of each. These

include multiple adware families, injectors, and a malware family considered riskware, i.e., software

Chapter 5: Malicious Process Detection 5.4 Experimental results

87

that is not necessarily malicious. A study of a subset of these samples indicated that they did not

perform any obvious malicious tasks on the testbed. The family with the highest representation in

the set of false positives was Kryptik, a Trojan backdoor. The reason for its high representation in

the set of false positives was primarily its high overall representation, with more than 4,000 samples

included in this study.

5.4.8 Malware comparison

The goal of this section is to characterize the LR 3-gram detector’s performance against specific

malware families. Here, a detector is trained for each malware family and cross-validated against

instances of the same family. Table 5.3 summarizes the experimental results achieved for ESET

malware families. The table shows the TPR achieved by the detector at a fixed FPR of 10−5 against

each malware family and the number of samples in each family. Only families with at least 100

samples are shown, and they are sorted in decreasing order of TPR.

The results in Table 5.3 show that the TPR of the detectors were generally high. The detector

correctly identified every sample of 23 of the listed families, indicated by the TPRs of 1 in the

table. There were also a handful of outliers against which the detector performed relatively poorly.

Among those families were LockScreen, ransomware that displays a password-protected lockscreen,

and the adware program SystemSecurity. Such false negatives are not particularly worrisome, since

these malware samples provide other obvious signs of infection. Among the malware families with

the lowest TPRs were malware droppers and downloaders, families that are loosely-defined or that

involve the execution of other types of malware. It is likely that such families were not accurately

characterized during training, due to their relatively low sample sizes and wide range of functions.

The described malware detection system generally performs very well against well-defined mal-

ware families, but struggles against more loosely-defined families. Given this result, it is likely that

the use of an ensemble of multiple detectors trained on canonical malware families would lead to an

overall improvement in detection accuracy compared to the use of a single malware detector. Such

a detector would likely be able to detect the specific processes created by loosely-defined malware

samples, such as downloaders and droppers.

Chapter 5: Malicious Process Detection 5.4 Experimental results

88

Table 5.3: Per-family malware detector performance, showing TPR achieved at 10−5 FPR
every ESET malware family with at least 100 samples

family TPR samples

Mydoom 1.00 1,322

Adware.MultiPlug 1.00 487

MSIL/Solimba 1.00 445

Yuner 1.00 414

Dlhelper.C 1.00 400

AdWare.iBryte 1.00 275

Viking 1.00 274

LunaStorm 1.00 245

Neshta 1.00 181

DownloadAdmin.I 1.00 126

Adware.iBryte 1.00 119

bmMedia 1.00 110

Spy.Qukart 1.00 110

Klez 1.00 106

AdWare.MultiPlug 1.00 1,493

Simda 1.00 576

SoftPulse 1.00 442

Alman 1.00 705

Madang 1.00 699

Injector.Autoit 1.00 546

Packed.ASProtect 1.00 291

TrojanDownloader.Waski 1.00 314

AdWare.LoadMoney 1.00 200

Hupigon 0.99 891

Ramnit 0.99 931

ServStart 0.99 304

Parite 0.99 639

Delf 0.99 1,701

Fynloski 0.99 1,051

Farfli 0.99 653

VB 0.99 621

FirseriaInstaller 0.99 250

PSW.OnLineGames 0.99 965

MSIL/TrjDropper.Binder 0.99 105

Spy.Zbot 0.99 735

family TPR samples

MSIL/Bladabindi 0.99 804

AutoRun.VB 0.99 448

FlyStudio 0.99 576

Injector 0.98 4,454

Spy.Banker 0.98 560

IRCBot 0.98 934

Autoit 0.98 235

Sality 0.98 1,961

MSIL/Injector 0.98 1,467

MSIL/Stimilik 0.98 184

Rbot 0.98 127

Kryptik 0.97 4,088

Wapomi 0.97 280

Packed.Themida 0.97 175

Dorkbot 0.97 186

Agent 0.97 1,189

Spatet 0.97 245

PSW.Fareit 0.96 186

MSIL/Kryptik 0.96 376

unknown.NewHeur PE 0.96 196

Chir 0.96 131

TrojanDownloader.Agent 0.96 525

TrojanDownloader.Small 0.96 267

TrojanDropper.Agent 0.95 154

TrojanDropper.Delf 0.95 121

Neurevt 0.95 108

Adware.SystemSecurity 0.94 110

MSIL/Agent 0.94 147

TrojanDownloader.Banload 0.94 143

LockScreen 0.93 233

MSIL/TrjanDropper.Agent 0.91 122

Virut 0.91 260

Generik 0.90 174

TrojanDownloader.Wauchos 0.89 123

Chapter 5: Malicious Process Detection 5.4 Experimental results

89

5.5 Case study

The experimental results in the preceding section were obtained using cross-validation against the

data collected from the testbed and from the home and office environments. These are controlled

environments wherein the processes could be relatively accurately labeled as benign or malicious

in the ground truth. Conversely, the public computer labs present an uncontrolled environment,

where typical users are novices with limited training in security best practices and are provided

privileged access to the hosts. The goal of this case study is to use the models developed from the

controlled environments to detect whether any potentially malicious software executed on the public

computers.

For the case study, the LR detector was used in a manner intended to mimic potential com-

mercial deployment. The detector was trained using the labeled data collected from the controlled

environments, and the detection threshold λ was set based on the detection results achieved using

an independent training set from the same environment. To be consistent with the study in the

previous sections, λ was selected as the threshold that provided the maximum TPR for a fixed FPR

of 10−5. In total, more than 56,000 processes were observed in the public computer labs. Of these

processes, the LR detector labeled 373 processes as potentially malicious. Of the processes labeled

malicious,

• 90 were confirmed to be malicious software. These included multiple families of known adware

programs and browser hijackers, and were observed on three of the hosts.

• 99 were installers for unknown software whose provenance could not be determined.

• 184 appeared to be false positives.

The false positives were composed of many repeated instances of a small number of applications.

The majority (114) of these processes were from bundled software applications pre-installed on the

computers by the hardware vendor. The others included a document viewer, a media player, tax

preparation software, a game used for teaching students how to type, a massively multiplayer online

game, security software, a web browser, and system restore software.

Chapter 5: Malicious Process Detection 5.5 Case study

90

Some of the aforementioned false positives can be attributed to deficiencies in the training data.

For example, the training set did not include any hardware vendor software or system restore soft-

ware, and contained few instances of security software and games. Others, such as the web browser

false positives, occurred on a host infected with known adware. Therefore, these processes may have

been identified as malware due to malicious browser plugins.

Despite the higher than expected FPR in the case study, the study did have positive takeaways.

First, the study did correctly reveal the presence of malware on the public computers. Furthermore,

multiple malware processes were identified from malware families that were not included in the

malware set used for training. Thus, the case study illustrated that the detector is successful in

identifying new malware families in an independent environment. Finally, the case study illustrated

flaws in the ground truth labeling process and underscored the importance of using a diverse set of

benign software for training.

5.6 Sequential malware detection results

This section presents the sequential detection results achieved using adaptations of Wald’s SPRT

and Page’s CUSUM test. The tests use the probability estimates output by the LR detector to

sequentially compute a decision statistic. To apply the sequential detection techniques, the system

call traces were partitioned block-wise into sub-traces of a fixed length lb. The traces studied in the

previous section, which contained 1,500 system calls each, were partitioned into sub-traces of sizes

ranging from 50 to 750 system calls. Both training and testing were performed block-wise on the

sub-traces, and the decision thresholds were determined experimentally to achieve a desired FPR.

The experimental results of this study are presented in Table 5.4, which shows the results achieved

at a fixed FPR of 10−5 for each sub-trace length lb. The results are presented in terms of the TPR

and ADD of each detector. The ADD is presented as the ADD for positive detections only, i.e., the

number of system calls on average that were observed before the detector indicated that a process was

malicious. This distinction is made to ensure fair comparisons between the two detectors, because

the implementation of Page’s CUSUM considers only the problem of identifying malware, and not

of identifying benign software. The ADD of Wald’s SPRT for negative decisions was much lower

Chapter 5: Malicious Process Detection 5.6 Sequential detection results

91

Table 5.4: Sequential detection results for Page’s CUSUM test and Wald’s SPRT, showing
the average detection delay (ADD) and true positive rate (TPR) at a fixed FPR of 10−5

lb SPRT TPR SPRT ADD CUSUM TPR CUSUM ADD

50 0.81 875 0.72 947

75 0.71 927 0.71 993

100 0.87 881 0.81 949

125 0.86 989 0.81 971

150 0.90 863 0.87 930

200 0.88 874 0.86 907

250 0.91 933 0.87 933

300 0.90 974 0.88 1013

350 0.90 923 0.91 924

375 0.94 912 0.92 960

500 0.94 1030 0.94 1033

750 0.95 1031 0.94 1094

than for positive decisions.

The ADD of the sequential tests was 953 system calls, consistent with the results presented in

Section 5.4.1 that indicated peak detection performance was achieved at around 1000 system calls.

For the system call traces used in this study, 1,000 system calls corresponds to an average execution

time of 205 ms. The ADD of each test was relatively consistent regardless of the choice of the block

size lb. At a fixed FPR of 10−5, both Page’s CUSUM test and Wald’s SPRT provided similar TPRs.

The highest detection accuracy was achieved for block lengths lb ≥ 500. Shorter block lengths were

less effective primarily because such short system call traces were not particularly informative, as

illustrated in Section 5.4.5. The primary advantage of the sequential detection methods is that they

terminate as soon as enough evidence is collected that a process is malicious. Page’s CUSUM offers

the additional advantage that it is a continuous inspection scheme. That is, it monitors a process

throughout its execution, and can detect the execution of malicious code regardless of when it occurs.

5.7 Conclusions

This section presented four detection algorithms and studied their empirical detection accuracy

under fixed FPR constraints. The empirical results were used to determine the set of algorithms

and parameters that provided the highest detection accuracy, guiding the design of a malicious

Chapter 5: Malicious Process Detection 5.7 Conclusions

92

process detection system. Logistic regression (LR) was chosen because it provided the highest

detection accuracy and provided probability estimates as outputs. The selected feature extraction

techniques included information retrieval, feature selection, and feature scaling techniques. The

selected techniques used

• ordered 3-grams and trace lengths l ≥ 1000 for information retrieval;

• a subset of 4,000 3-grams chosen using RFE for feature selection; and

• logarithmic frequency, IDF transformation, and L2 normalization for feature scaling.

The selected detector achieved a TPR exceeding 0.95 at a FPR of 10−5. Experimental results

demonstrated the detector to be robust to drift and highly effective against specific malware families.

A continuous inspection scheme using Page’s CUSUM test enabled the rapid detection of malicious

behaviors occurring at any time during the execution of a process.

Chapter 5: Malicious Process Detection 5.7 Conclusions

93

Chapter 6: Malicious Process Classification

This chapter addresses the third major challenge of this thesis, that of classifying new malicious

processes according to their behavioral similarity to known malware. Classification refers to the

process of identifying the malware category or malware family to which a malicious process belongs.

The malware classifier studied in this section uses the same system call trace data used for detection

and performs classification as soon as a malicious process is detected. The outputs of the classifier

are intended to guide mitigation and post-mortem analysis. Furthermore, the classifier outputs can

be combined with other classification techniques to aid in detailed malware analyses [26]. The two

primary challenges in malware classification are

• determining a set of techniques to quickly and accurately classify malicious processes using the

same system call traces used for detection, and

• identifying a set of ground truth labels to use for training and testing.

To address the first challenge, Section 6.1 presents five classification algorithms selected for their

previously demonstrated effectiveness in both document and malware classification. Section 6.2

describes the techniques used to evaluate the classifiers, and Section 6.3 presents the experimental

results. The second challenge arises from the inconsistency and incompleteness of existing malware

labeling systems. Since there is no universally accepted malware labeling scheme, Section 6.3.1

explores the use of multiple ground truth labeling schemes derived from antivirus (AV) signatures.

6.1 Malware classification algorithms

The classification techniques considered in this chapter are used in a supervised learning context,

wherein the classification models are learned from labeled training data. This chapter considers

five classification algorithms, the first two of which are multi-class implementations of detection

algorithms presented in Chapter 5. The classification algorithms are

94

• a multi-class implementation of the logistic regression (LR) algorithm (Section 6.1.1);

• näıve Bayes, a multi-class implementation of the log-likelihood ratio test (LLRT) (Section 6.1.2);

• random forests of decision trees (Section 6.1.3);

• a nearest neighbors classifier (Section 6.1.4); and

• a nearest centroid classifier (Section 6.1.5).

6.1.1 Multi-class logistic regression (LR)

The LR training and testing algorithms described in Section 5.1.4 are designed for a binary decision

task. Classification is a multi-class problem, wherein the goal is to identify to which of many

families or categories a malware processes belongs. This study uses a multi-class implementation

of LR known as the one-versus-all (OVA) approach [124]. The OVA approach treats the K-class

classification problem as a collection of binary detection problems. The classifier uses K detectors,

one for each of the malware classes. Each detector is trained to differentiate between the malware

belonging to a specific malware class Ck and malware belonging to all other classes Ck̄.

The classifier selects the class with the highest decision statistic. Given pCk(x̂), the probability

that a process with feature vector x̂ comes from a malware sample of class Ck, and pCk̄(x̂), the

probability that it does not come from class Ck, the OVA classifier selects the most likely class Ĉk

as

Ĉk = arg max
Ck

log

(
pCk(x̂)

pCk̄(x̂)

)
. (6.1)

The LR classifier is considered here because it offered the best performance of the four detection algo-

rithms considered in the previous chapter, because of its computational simplicity during detection,

and because of its efficient training process.

6.1.2 Näıve Bayes

Like the LR detector, the LLRT described in Section 5.1.2 is also a binary detection algorithm. The

multi-class implementation of the LLRT is commonly referred to as the näıve Bayes algorithm, as it

bases its detection thresholds on error costs and prior probabilities [116]. The classifier is based on

Chapter 6: Malware Classification 6.1 Malware classification algorithms

95

Bayes’ rule, which states that the posterior probability is proportional to the product of the prior

probability and likelihood. That is, the posterior probability P (Ck|x̂) that a process comes from

class Ck given its feature vector x̂ is proportional to the prior probability P (Ck) that a malware

sample is from class Ck and the class-conditional likelihood of x̂,

P (Ck|x̂) ∝ P (Ck)× PX̂|Ck(x̂) . (6.2)

The näıve Bayes classifier computes the most likely class label Ĉk of a feature vector x̂ as the class

with the highest posterior probability

Ĉk = arg max
Ck

P (Ck)× PX̂|Ck(x̂) . (6.3)

For this study, the prior probabilities P (Ck) are estimated from the training data.

Two different implementations of the näıve Bayes classifier are considered in this work: a multino-

mial and a Gaussian implementation. The multinomial approach models the probabilities PX̂|Ck(x̂)

using a multinomial distribution and is used with the term frequency – inverse document frequency

(TF-IDF) transformed feature data. The Gaussian approach models the posterior probabilities

PX̂|Ck(x̂) using a Gaussian distribution and is used with the singular value decomposition (SVD)

and linear discriminant analysis (LDA) transformed feature data. Although it performed poorly

for malware detection, the näıve Bayes algorithm is considered for classification because of its com-

putational simplicity during training and testing and because related work has demonstrated its

usefulness for malware classification.

6.1.3 Random forests

The random forests algorithm uses a collection of binary decision trees for classification. Given a

the system call trace of a malware sample with a feature vector x̂, a binary decision tree classifies

a process through a sequence of simple threshold tests. The random forest classifier is an ensemble

learner that trains a collection of decision trees to use for classification. The random forests algorithm

Chapter 6: Malware Classification 6.1 Malware classification algorithms

96

works by selecting the majority class Ĉk output by the collection.

A decision tree comprises of a set of nodes and edges. The interior nodes of the tree correspond

to simple threshold tests, each of which is performed against a single scalar feature x̂i ∈ x̂. During

detection, the tree is traversed by evaluating the threshold test at each node, moving to the node’s

left child if x̂i ≤ λ, or right child if x̂i > λ. The tree traversal continues until a leaf node is

reached. Each leaf node of the tree represents a predicted malware class Ĉk, which is the output of

the classifier.

The classification and regression trees (CART) decision tree algorithm was used in this study

to train the decision tree classifier [125]. The CART algorithm builds decision trees recursively,

starting at the root node of the tree. It begins by considering all of the malware samples and their

corresponding labels and feature vectors x̂. It selects a feature xi ∈ x̂ and a threshold λ that divide

the data into two sets, those samples that exceed the threshold and those that do not. The CART

algorithm seeks the feature and threshold that cause similar malware samples to be grouped together

after the split. To achieve this goal, the feature and threshold are selected such that they minimize

the weighted average of the Gini impurity of the resulting sets. The Gini impurity considers a set

of feature vectors X each belonging to one of K classes, denoted Ck. Given probabilities p(Ck) that

a malware sample belong to class Ck estimated from the training data, the Gini impurity G of a set

X is

G(X) =

K∑
k=1

p(Ck) (1− p(Ck)) . (6.4)

The minimum Gini impurity (0) is achieved when a set contains only malware of a single class.

The feature and threshold are chosen for the root node divide the malware into two disjoint

sets at the two child nodes. The process is repeated for each child node, and continues until a

node contains only malware of the same class. Such nodes becomes leaf nodes of the decision tree.

The algorithm terminates based on tunable parameters that determine the complexity of the tree,

including the minimum number of training instances assigned to each leaf node and the minimum

number of training instances required to split a node.

Decision tree models were selected for the white box decision models they provide. The random

Chapter 6: Malware Classification 6.1 Malware classification algorithms

97

forest classifier [126], was selected due to the tendency of decision trees to overfit the training data.

To ensure diversity in the decision trees, the decision tree training algorithm is modified to consider

a only randomly selected subset of features at each node.

6.1.4 Nearest neighbors

The k-nearest neighbors classifier uses the entire training set X as its model [113]. For detection,

it computes the Euclidean distance between a vector x̂ and every vector in the training set X . The

vectors in the training set nearest to x̂ are considered its nearest neighbors. The output of the

classifier is the class with the highest representation in the set of nearest neighbors.

The nearest neighbor classifier is advantageous because of its simplicity and because it can realize

complicated decision surfaces. However, its usefulness is limited to low-dimensional datasets due to

the difficulty of comparing the distances among points in high dimensional space. Feature reduction

techniques are typically used with the nearest neighbors classifier to project high-dimensional data

onto a lower-dimensional space. In this study, SVD and LDA are used for feature reduction. Since it

stores the entire training set as its model, the memory and computational complexity of the nearest

neighbors classifier are too high to be considered for widespread deployment. Rather, the nearest

neighbor classifier is considered here primarily for comparison.

6.1.5 Nearest centroid

The nearest centroid classifier models each malware class as its centroid, i.e., the average of its feature

vectors [127]. Classification is performed by computing the Euclidean distance from a feature vector

x̂ to each centroid. The output of the classifier is the class label of the centroid nearest to the vector.

The nearest centroid classifier is advantageous because of its lower model and computational

complexity compared to the nearest neighbor classifier. Whereas the model storage and compu-

tational complexity of the nearest neighbor classifier is O(N), where N is the number of training

samples, the storage and computational complexity of the nearest centroid classifier is O(K), where

K is the number of classes, and K � N . However, the nearest centroid classifier assumes convexity

of its classes and equal variance along all dimensions. Therefore, it performs poorly when the data

Chapter 6: Malware Classification 6.1 Malware classification algorithms

98

points within the classes do not form non-overlapping convex sets or when the feature variances

differ significantly. Like the nearest neighbor classifier, the nearest centroid classifier is typically

used with feature reduction techniques, such as the SVD and LDA transformations considered in

this study.

6.2 Malware classifier evaluation

The techniques described in this section were used to evaluate the effectiveness of the selected

malware classification algorithms. One set of techniques is used to evaluate classification accuracy

on a per-class basis, while the other is used to asses the overall accuracy of a classifier. For per-class

accuracy, this study considers precision, recall, and F1 scores. For overall accuracy, it considers

average F1 scores and κ statistics. These per-class techniques consider the following four quantities

for each class Ck.

• FPCk is the number of false positives, i.e., the number of processes incorrectly classified as

belonging to class Ck.

• TPCk is the number of true positives, i.e., the number of processes correctly classified as

belonging to class Ck.

• FNCk is the number of false negatives, i.e., the number of processes in Ck incorrectly classified

as belonging to a different class.

• TNCk is the number of true negatives, i.e., the number of processes not in Ck correctly classified

as not belonging to class Ck.

6.2.1 Precision

The precision of a class Ck is the fraction of processes classified as Ck that belong to Ck,

PrecisionCk =
TPCk

TPCk + FPCk
. (6.5)

The precision provides a measurement of the relevance of the positive classifications. A precision of

1 indicates that the classifier is always correct when it classifies a process as belonging to class Ck,

Chapter 6: Malware Classification 6.2 Malware classifier evaluation

99

whereas a precision of 0 indicates it is never correct when it does so.

6.2.2 Recall

The recall of a class Ck is the fraction of the processes belonging to Ck in the ground truth that are

correctly classified as Ck,

RecallCk =
TPCk

TPCk + FNCk
. (6.6)

The recall provides a measurement of the sensitivity of the classifier. A recall of 1 indicates that

every instance of class Ck was correctly classified, whereas a recall of 0 indicates that every instance

of Ck was incorrectly classified.

6.2.3 F1 score

The F1 score of a class Ck is the harmonic mean of the precision and recall,

F1, Ck = 2
PrecisionCk ×RecallCk
PrecisionCk +RecallCk

. (6.7)

An F1 score of 0 indicates 0 recall or 0 precision, whereas an F1 score of 1 indicates perfect recall

and precision. In this study, F1 score is used to evaluate classification accuracy both per-class and

as an aggregate measure over all the classes. To evaluate the overall F1 score, the individual class

scores are averaged over the classes. Three different averaging techniques are considered.

Micro-averaged F1 score: Each process is given equal weight, and the average is computed over

the individual processes. This provides an indicator of how effective the classifier is on large

classes, since classes with higher representation receive the most weight.

Macro-averaged F1 score: Each class is given equal weight, and the average is the average of the

F1 scores from all the classes. This provides an indicator of how effective the classifier is on

small classes, since all classes are treated equally.

Weighted F1 score: Each class is weighted inversely by its support in the ground truth. This

approach is intended to give a balanced measure of the F1 score when classes are not balanced,

as is the case in this work.

Chapter 6: Malware Classification 6.2 Malware classifier evaluation

100

All three averaging techniques are considered because the classes of the malware samples used in

this study are not balanced. By including all three values, the performance of the classifiers against

small classes, large classes, and on average can be studied.

6.2.4 Cohen’s κ statistic

The F1 score does not take into account the effects of chance on classification performance. To

address this concern, this study also uses Cohen’s κ statistic for classifier evaluation [128]. The κ

statistic is intended for the comparison of two different sets of class assignments and provides a

measure of the agreement between the sets. Here, the κ statistic is used to measure the agreement

between classification results and the ground truth. The κ statistic compares the accuracy of a

classifier to the accuracy of a random classifier operating on the same dataset. The κ statistic

compares the observed accuracy of a classifier to the expected accuracy of a random classifier. The

observed accuracy of a classifier is the fraction of processes it correctly classifies,

ACCobserved =
1

card(X)

∑
Ck

TPCk . (6.8)

The expected accuracy of a classifier is computed by estimating the probability of occurrence of

each class separately for the ground truth and classification results. The expected accuracy assumes

the class assignments made by both the classifier and the ground truth are randomly determined

according to the estimated probabilities of each class. Given pcr(Ck) as the probability of appearance

of each class Ck in the classification results, and pgt(Ck) as the probability of appearance of each

class Ck in the ground truth, the expected accuracy is

ACCexpected =
∑
Ck

pcr(Ck)× pgt(Ck) . (6.9)

The κ statistic is computed from the observed and expected accuracy as

κ =
ACCobserved −ACCexpected

1−ACCexpected
. (6.10)

Chapter 6: Malware Classification 6.2 Malware classifier evaluation

101

The κ values range from −1 to 1, with 1 indicating perfect agreement, −1 indicating perfect dis-

agreement, and 0 indicating the results are not discernible from random chance. The κ statistic is

useful in this study because the class imbalance of the malware samples (especially for categorical

labels) contributes to a high expected accuracy of a random classifier.

6.3 Experimental classification results

This section presents experimental results achieved using the classifiers described in Section 6.1 and

evaluation techniques described in Section 6.2. The results were obtained through cross-validation

performed on the set of processes collected from the execution of more than 55,000 distinct malware

samples. Among the experimental results described in this section are

• a comparison of the classification accuracy afforded by multiple ground truth labeling schemes

(Section 6.3.1);

• an evaluation and comparison of the five classification algorithms (Section 6.3.2);

• analysis of per-category and per-family classification accuracy (Sections 6.3.3 and 6.3.4); and

• a feature selection study, comparing the sets of features chosen for detection and classification

(Section 6.3.5).

The outcome of this section is the design of a malware classification system, with techniques and

parameters chosen experimentally to maximize its accuracy against the malware samples considered

for this study.

6.3.1 Ground truth comparison

The lack of a universal malware naming scheme, combined with the incompleteness and inconsistency

of existing naming schemes, complicates the problem of automatic classification. In particular, it

raises the question: What are the relevant malware classes against which a classifier should be

evaluated? This section presents a study of the accuracy of the LR classifier against 27 different

ground truth labeling schemes derived from 16 different AV vendors’ labels. The ground truth

labeling schemes are listed in Table 6.1, identified by the AV labels from which they are derived and

Chapter 6: Malware Classification 6.3 Experimental classification results

102

Table 6.1: Classification ground truth performance comparison for the LR classifier

Ground truth classes processes κ F1 (micro) F1 (macro) F1 (weighted)
AntiVir-category 16 62,398 0.74 0.84 0.51 0.83
AntiVir-family 167 59,478 0.59 0.62 0.40 0.61
Avast-category 12 78,147 0.51 0.64 0.40 0.67
Avast-family 192 75,146 0.50 0.52 0.38 0.53
DrWeb-category 9 74,256 0.61 0.77 0.41 0.79
DrWeb-family 226 70,857 0.62 0.62 0.44 0.64
Emsisoft-category 32 77,284 0.49 0.57 0.30 0.59
Emsisoft-family 258 68,434 0.47 0.48 0.32 0.50
ESETNOD32-family 251 75,079 0.68 0.69 0.48 0.70
FSecure-category 46 75,726 0.58 0.66 0.47 0.66
FSecure-family 172 72,331 0.55 0.57 0.39 0.57
GData-category 26 81,038 0.52 0.60 0.32 0.62
GData-family 218 72,807 0.48 0.50 0.38 0.51
Ikarus-category 41 75,429 0.54 0.58 0.40 0.60
Ikarus-family 419 67,937 0.55 0.56 0.38 0.55
K7AntiVirus-category 14 73,229 0.56 0.66 0.51 0.67
Kaspersky-family 259 69,325 0.53 0.54 0.40 0.55
Kaspersky-category 30 72,933 0.56 0.61 0.39 0.63
McAfee-category 111 79,477 0.55 0.57 0.48 0.58
Microsoft-family 263 61,883 0.72 0.73 0.53 0.73
Microsoft-category 19 66,930 0.71 0.75 0.50 0.76
Panda-category 8 71,352 0.60 0.76 0.51 0.76
Panda-family 98 68,838 0.56 0.60 0.47 0.60
Symantec-category 22 68,019 0.52 0.62 0.41 0.62
TrendMicro-family 207 57,950 0.50 0.52 0.40 0.52
Vipre-category 28 77,032 0.58 0.71 0.39 0.74
Vipre-family 185 74,713 0.52 0.58 0.41 0.61

whether they are category or family labels. For example, the AntiVir-category labels are categorical

labels derived from the AntiVir AV labels. For each of the ground truth labeling schemes, the table

lists the number of classes and total number of processes included in the labeling scheme. For each

set of labeling schemes, only malware samples positively identified as malicious by the corresponding

AV vendor were considered. Furthermore, only classes containing at least ten malware samples were

considered to ensure meaningful cross-validation results.

Table 6.1 presents the performance of the LR classifier in terms of both its κ and F1 scores.

The results provide two useful insights into the performance of the classifier. First, the macro-

averaged F1 score is consistently low, indicating the classifier performs poorly against small classes

regardless of the ground truth. Second, the κ scores, micro-averaged F1 scores, and weighted F1

scores varied significantly based on the chosen ground truth. This observation indicates that system

Chapter 6: Malware Classification 6.3 Experimental classification results

103

call 3-gram features characterize certain ground truth labeling schemes better than others. The

highest performing categorical ground truth labels were those derived from the AntiVir and Microsoft

labels, while the highest performing family ground truth labels were those derived from the ESET

and Microsoft labels. The high classification performance of the AntiVir labels was attributed to a

single class accounting for the vast majority of the samples. Therefore, only the ESET and Microsoft

labels are considered for the remainder of this study.

6.3.2 Classifier comparison

This section compares the accuracy of the five classifiers described in Section 6.1 using three different

feature extraction strategies.

• The first strategy (TF-IDF) considers the best performing feature set from the detection

results, namely logarithmic frequencies, inverse document frequency (IDF) transformation,

and L2 scaling.

• The second strategy (TF-IDF, SVD) combines the first with SVD, wherein the TF-IDF trans-

formed features are projected onto their first 500 singular values.

• The third strategy (TF-IDF, SVD, LDA) combines the second with LDA, wherein the SVD

transformed features are projected onto K − 1 features selected using LDA.

While the LR classifier is evaluated using all three feature extraction strategies, the other classifiers

are evaluated using only a subset of the techniques. The nearest centroid, nearest neighbor, and

decision tree algorithms do not consider the TF-IDF features because of the high dimensionality of

the data and the computational complexity of the algorithms. The multinomial and Gaussian näıve

Bayes are restricted only to the feature sets that can be described by the multinomial and Gaussian

distribution models, respectively. Therefore, the former uses only the TF-IDF data and the latter

uses only the SVD and LDA transformed feature data.

Table 6.2 summarizes the performance of each classifier and feature extraction strategy combi-

nation in terms of its κ statistic and averaged F1 scores. Among the worst performers were the the

näıve Bayes and nearest centroid classifiers. The näıve Bayes classifier performed poorly because the

Chapter 6: Malware Classification 6.3 Experimental classification results

104

Table 6.2: Classifier and feature extraction comparison

detector feature extraction κ F1 (micro) F1 (macro) F1 (weighted)

LR TF-IDF 0.73 0.73 0.55 0.73

LR TF-IDF, SVD 0.60 0.61 0.35 0.62

LR TF-IDF, SVD, LDA 0.66 0.66 0.44 0.66

nearest centroid TF-IDF, SVD 0.29 0.29 0.17 0.34

nearest centroid TF-IDF, SVD, LDA 0.55 0.55 0.32 0.58

nearest neighbor TF-IDF, SVD 0.72 0.72 0.47 0.71

nearest neighbor TF-IDF, SVD, LDA 0.73 0.73 0.49 0.72

random forests TF-IDF, SVD 0.73 0.73 0.52 0.72

random forests TF-IDF, SVD, LDA 0.72 0.73 0.50 0.71

multinomial näıve Bayes TF-IDF 0.42 0.43 0.06 0.34

Gaussian näıve Bayes TF-IDF, SVD 0.47 0.47 0.35 0.52

Gaussian näıve Bayes TF-IDF, SVD, LDA 0.47 0.47 0.35 0.52

assumed probability models were inaccurate and tended to overfit the training data. The nearest

centroid classifier performed poorly because the feature data did not form non-overlapping convex

sets. The nearest centroid detector’s performance improves significantly when LDA is used, because

the resulting sets have higher separation. However, it still significantly underperforms the highest

performing classifiers.

The highest performers were the nearest neighbor, random forest, and LR classifiers. The first two

performed equally well whether SVD or LDA was used. The high accuracy of the nearest neighbor

classifier underscores the weakness of its counterpart, the nearest centroid classifier. Although the

two use the similar distance metric-based algorithms, the simplistic model and convexity assumption

of the nearest centroid classifier causes its poor performance. The relatively poor performance of

the LR classifier with feature reduction indicates that the feature data are not linearly separable in

the reduced feature space. The nearest neighbor and random forests classifiers achieved accurate

results due to the nonlinear decision surfaces they are able to realize.

For a production deployment, the LR classifier is preferred to the random forests and nearest

neighbor algorithms. The LR classifier provides lower training complexity than the random forest

classifier and provides an efficient mechanism for re-training the models as new malware samples

are discovered. The LR classifier also provides a lower testing complexity than the nearest neighbor

Chapter 6: Malware Classification 6.3 Experimental classification results

105

B
a
ck

d
o
o
r

D
D

o
S

D
ia

le
r

E
x
p

lo
it

H
a
ck

T
o
o
l

M
o
n

it
o
ri

n
g
T

o
o
l

P
W

S

R
a
n

so
m

R
o
g
u

e

S
o
ft

w
a
re

B
u

n
d

le
r

T
ro

ja
n

T
ro

ja
n

C
li

ck
er

T
ro

ja
n

D
o
w

n
lo

a
d

er

T
ro

ja
n

D
ro

p
p

er

T
ro

ja
n

P
ro

x
y

T
ro

ja
n

S
p
y

V
ir

T
o
o
l

V
ir

u
s

W
o
rm

classifier output

Backdoor

DDoS

Dialer

Exploit

HackTool

MonitoringTool

PWS

Ransom

Rogue

SoftwareBundler

Trojan

TrojanClicker

TrojanDownloader

TrojanDropper

TrojanProxy

TrojanSpy

VirTool

Virus

Worm

gr
ou

n
d

tr
u

th

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6.1: Classifier confusion matrix for Microsoft category ground truth labels, showing
the fraction of samples in each class indicated by the row labels classified as the column labels

classifier, making it more desirable for deployment on production hosts.

6.3.3 Category-level classification results

The preceding sections provided a high-level overview of classification performance in terms of κ

statistics and averaged F1 scores. This section provides analysis of per-category accuracy of the LR

classifier using the Microsoft category labels. The experimental results are presented in terms of the

classifier’s confusion matrix. The confusion matrix is a K ×K matrix, wherein the rows represent

the ground truth labels and the columns represent the classifier outputs. Traditionally, the entries of

a confusion matrix are the number of instances of the row class assigned to the column class by the

classifier. The diagonal entries indicate correctly classified instances, while the non-diagonal entries

Chapter 6: Malware Classification 6.3 Experimental classification results

106

indicate incorrectly classified instances. Figure 6.1 shows the confusion matrix for the LR classifier

using the Microsoft family labels. Since the classes are not balanced, the entries of the matrix are

the percentage of the row class assigned to the column class by the classifier. For example, more

than 90% of the worms were correctly classified as worms, whereas less than 20% of the monitoring

tools were correctly classified as monitoring tools.

The confusion matrix shows two dark vertical lines in the backdoor and Trojan columns, in-

dicating that many malware samples from multiple categories were misclassified as backdoors and

Trojans. The backdoor misclassifications were caused by malware samples in other classes provid-

ing backdoors and backdoor-like functionality. For example, many malware samples used in this

study notified remote servers when a host is infected, sent confidential data to remote servers, or

requested commands and configuration information from remote servers. Conversely, the Trojan

misclassifications were caused by the abundance of Trojans in the training set and the wide variety

of functionality they exhibited. The Trojans used in this study provided functions that overlapped

with the majority of the other malware classes. Many Trojans included backdoor, distributed denial

of service (DDoS), password stealing, and other malicious functions.

The confusion matrix in Figure 6.1 also shows a dark horizontal line on the software bundler

row, which indicates that many software bundler samples were misclassified. The software bundler

samples were most often misclassified as various types of Trojans. This is also likely due to the

nature of a the software bundlers, which are legitimate software that also install malware. Whereas

a Trojan is disguised as legitimate software, a software bundler actually contains legitimate software

as the delivery mechanism for the malware. The misclassifications can be attributed to this similarity

in function and to the fact that Trojans outnumbered software bundlers in the malware set.

There were two other categories for which the classifier performed particularly poorly, hack tools

and monitoring tools. Hack tools include key generators and password crackers. Such tools are often

distributed with other bundled malware, which likely led to the misclassifications. Monitoring tools

are commercial programs that monitor computer usage, and can include keyloggers and password

stealers. Monitoring tools are similar to Trojans and Trojan Droppers, because they typically are

Chapter 6: Malware Classification 6.3 Experimental classification results

107

bundled with and installed alongside other software. They are similar to spyware because they

transmit collected data over the network. Overall, the results presented in this section indicate that

overlapping malware functionality and broadly-defined malware families are the primary cause of

category-level misclassifications.

6.3.4 Family-level classification results

Whereas the previous section characterized the performance of the LR classifier using the Microsoft

category labels, this section characterizes its performance using the Microsoft family labels. In this

section, the experimental results are presented in terms of the precision, recall, and F1 score for

each of the malware categories in the ground truth. The results presented in Table 6.3 show the

precision, recall, F1 score, and number of instances of the 25 malware families with the highest F1

scores, and the 25 malware families with the lowest F1 scores. Among the best-performing families

are those with thousands of instances, whereas the poorest performers have at most 69 instances.

These results are consistent with those presented in Section 6.3.2, which indicated that the classifier

performs well for classes with many instances and poorly for classes with few instances.

Generally, the best performing families were those from narrowly defined malware categories, such

as Viruses, worms, exploits, password stealers (PWSs), and backdoors. Conversely, the worst per-

forming families were those from more broadly defined categories, particularly Trojans. Furthermore,

some of the poorly performing families are also broadly defined. For example, Trojan.Keylogger,

TrojanDropper.VB, and Trojan.Bumat!rts are generic families for keyloggers, Trojan droppers, and

Trojans. In contrast, the highest performing families are typically very narrowly defined. For ex-

ample, the Worm.Klez definition specifies the registry entries and files modified by the malware, its

interaction with other malware and AV software, how it searches for email addresses, the contents

of the emails it sends, how it propagates, and the security vulnerabilities it exploits.

One way to account for varying class sizes when training a classifier is to weight the classes

inversely based on their representation in the training set. Rare classes are oversampled to even

the class distributions and ensure that the classifier is not biased toward classes with higher repre-

sentation. For comparison, two versions of the LR classifier were trained, one weighting the classes

Chapter 6: Malware Classification 6.3 Experimental classification results

108

Table 6.3: Per-family classifier precision, recall, and F1 scores for the malware families with
the highest and lowest F1 scores

Family Precision Recall F1 score Instances
Virus.Nabucur 1 1 1 1652
Worm.Klez 1 1 1 218
Trojan.Recal 1 1 1 331
Worm.Ganelp 1 1 1 24
Worm.Fesber 1 1 1 702
Worm.Dumpy 1 1 1 18
Worm.Mydoom 0.99 1 0.99 1985
Backdoor.Wabot 0.98 0.99 0.99 324
TrojanDownloader.Seimon 0.98 1 0.99 47
TrojanDropper.Loring 0.97 0.99 0.98 706
Virus.Madang 0.98 0.97 0.98 703
Worm.VB 0.97 0.99 0.98 2423
TrojanDownloader.Ogimant 0.99 0.98 0.98 1202
Worm.Krol 0.95 0.98 0.97 43
Exploit.RpcDcom 0.93 1 0.96 25
Trojan.Startpage 0.96 0.96 0.96 921
PWS.Uosproy 0.95 0.98 0.96 309
Worm.Benjamin 0.96 0.96 0.96 24
Trojan.Phishbank 0.92 0.98 0.95 198
Backdoor.Small 0.93 0.94 0.94 327
Virus.Ipamor 1 0.88 0.94 17
Worm.Lightmoon 0.89 1 0.94 65
TrojanDownloader.Kanav 0.89 0.98 0.94 59
Worm.SillyFDC 0.89 0.99 0.94 89
Virus.Ramnit 0.99 0.87 0.93 2983
...
Ransom.Dircrypt 0.08 0.11 0.09 28
Backdoor.Bergat 0.27 0.05 0.09 55
Ransom.Urausy 0.05 0.14 0.08 28
Trojan.Rimecud 0.05 0.29 0.08 17
TrojanDropper.Cutwail 0.07 0.1 0.08 10
TrojanDownloader.Renos 0.07 0.07 0.07 14
Trojan.Agent 0.05 0.14 0.07 28
Trojan.Meredrop 0.07 0.07 0.07 41
Trojan.Sisproc 0.06 0.06 0.06 32
PWS.Ldpinch 0.06 0.05 0.06 20
TrojanDropper.VB 0.04 0.07 0.05 68
TrojanSpy.VB 0.03 0.15 0.05 20
Trojan.Bumat!rts 0.03 0.04 0.04 69
Trojan.Sisron!gmb 0.04 0.04 0.04 46
Trojan.Nedsym 0.03 0.06 0.04 16
Trojan.Orsam!rts 0.02 0.05 0.03 44
TrojanDownloader.Umbald 0.06 0.02 0.03 41
Trojan.Anomaly 0 0 0 42
Trojan.Napolar 0 0 0 14
Trojan.Yakad 0 0 0 24
Trojan.Comame 0 0 0 23
Trojan.Rimod 0 0 0 16
TrojanSpy.Keylogger 0 0 0 62
Trojan.Anaki 0 0 0 21
TrojanDownloader.Delf 0 0 0 13

Chapter 6: Malware Classification 6.3 Experimental classification results

109

0 2000 4000 6000 8000 10000
0.55

0.60

0.65

0.70

0.75

κ statistic
F1 score

Figure 6.2: Effects of feature selection on classification accuracy, showing the κ statistic and
weighted F1 scores of the classifier versus the number of features selected using recursive feature
elimination (RFE)

inversely based on their representation and the other using the training-data without modification.

The two versions of the classifier provided nearly identical results, including the same κ and weighted

F1 scores. The similarity of the two classifiers indicate that the size of the samples was not biasing

the classifier. Rather, the low precision and recall of the worst-performing classes in Table 6.3 were

likely caused by broadly defined malware families, mislabeled ground truth, and a lack of enough

samples to accurately characterize the families. Mislabeling may have occurred in the ground truth

where malware samples installed additional samples from other families. However, due to limitations

in the testing platform, the installed malware samples shared the ground truth labels of their parent

malware, even when they belonged to a different family.

6.3.5 Feature selection

RFE was used with the LR classifier to identify the most informative 3-grams for the classification

task. Figure 6.2 shows the cross validation results of RFE, showing the κ statistic and weighted

F1 scores for the classifier versus the number of chosen features. Similar to the detection results

presented in the previous chapter, the classification accuracy increases rapidly approaching 1000

Chapter 6: Malware Classification 6.3 Experimental classification results

110

features and levels out as the number of features increases. The maximum classification κ and F1

scores occur at 8000 features, much higher than the maximum detection accuracy, which occurred

at 3000 features. This result indicates that more features are required for the classification than are

required for detection.

A comparison of the 4000 highest ranked classification features and the 4000 features chosen

for detection indicates 34% overlap. The overlap indicates that many of the same features used to

distinguish malware from benign software are also useful for distinguishing among different classes

of benign software. When only the 4000 features used for detection are used for classification, the

LR classifier achieves a κ and weighted F1 score of 0.70 and 0.71, respectively. This corresponds to

a 4.1% decrease in classification accuracy when compared to the LR classifier when all the features

are used.

6.4 Conclusions

This chapter explored the use of multiple classification algorithms, feature extraction strategies,

and ground truth labeling schemes for malware classification. Through experimental evaluation,

it demonstrated that decision tree, nearest neighbor, and LR classifiers outperformed naive Bayes

and nearest centroid classifiers. Since the goal of this study was to identify those techniques best

suited for production deployment, the LR classifier was selected for its comparatively low model

and computational complexities. However, the LR classifier requires a larger feature set than the

detector to achieve maximum accuracy. In practice, the set of features used by the detector and

classifier would be expanded to afford both high detection and high classification accuracy. The

results presented in this section also demonstrate that, among the studied malware labeling systems,

the ESET and Microsoft naming systems afforded the highest classification accuracy. The classifier

performed best against well-defined malware families from those labeling systems, and worst against

broadly defined malware families and categories with few training instances.

Chapter 6: Malware Classification 6.4 Conclusions

111

Chapter 7: Conclusions

This study sought to determine the most effective feature extraction, detection, and classification

techniques to use for the detection and classification of malicious processes based on their system

call traces. The goal of this study was to identify techniques that were ‘lightweight’ enough and that

exhibited a low enough false positive rate (FPR) to be useful in production environments.

7.1 System design

Through experimental evaluation, this study identified the set of techniques that provided the best

detection performance at a fixed FPR of 10−5 and the highest classification accuracy. The best

performing feature extraction techniques were

• using a minimum system call trace length of l = 1,000;

• using a bag-of-ordered-3-grams representation to represent system call traces;

• using a subset of 8,000 ordered 3-grams chosen using recursive feature elimination (RFE); and

• performing feature scaling using term frequency – inverse document frequency (TF-IDF) trans-

formation with logarithmic term frequencies and L2 normalization.

For detection, the logistic regression (LR) and support vector machine (SVM) algorithms of-

fered the highest accuracy, outperforming a signature-based detector and log-likelihood ratio test

(LLRT). The LR detector was chosen because its probability estimates enable its integration with

the two sequential detection procedures considered in this study, Wald’s sequential probability ratio

test (SPRT) and Page’s cumulative sum (CUSUM) test. Of the two sequential procedures, Page’s

CUSUM test is preferred because it enables the continuous inspection processes throughout their

execution, and can detect latent malware that delay the execution of their malicious code.

For classification, the random forest, nearest neighbor, and LR algorithms provided the highest

accuracy, outperforming näıve Bayes and a nearest centroid classifier. The LR algorithm was chosen

112

Processes

Detector

Logistic Regression
Page's CUSUM test

Classifier

Logistic Regression
Microsoft or ESET labels

System Call
Service

Binary decisions
(`malicious' or `benign')Suspected malware family

System call traces

NtQueryPerformanceCounter
NtProtectVirtualMemory
NtProtectVirtualMemory
NtQueryInformationProcess
NtProtectVirtualMemory
...

Feature Extractor

Information retrieval

Ordered 3-grams

Feature scaling

Frequency vs. log frequency
IDF transformation

L2 norm

Feature selection

4,000 feature selected using RFE

feature vectors

Figure 7.1: Block diagram of malware detection and classification system showing chosen
feature extraction, detection, and classification techniques

over the nearest neighbor methods for its lower memory and computational complexity during testing

and chosen over the random forests because of its lower memory and computational complexity

during training.

A block diagram of the complete malware detection and classification system is provided in

Figure 7.1. The figure shows the four major components of the system, the System Call Service

(SCS), feature extractor, detector, and classifier, in gray. The SCS outputs system call traces which

the feature extractor processes and represents as feature vectors x̂. The feature vectors are processed

by the detector and classifier, which provide outputs indicating the suspected family of any detected

malicious processes. The specific algorithms and parameters used by each component are indicated

in the block diagram.

Chapter 7: Conclusions 7.2 Summary of system operation

113

wait for
system call

add occurrence of most
recent 3-gram to feature vector

no

yes

TF-IDF
transformation

LR + CUSUM detector

+

yes

no

output
“malware detected” LR classifier

zero feature vector
and counter

process
starts

output malware family

Figure 7.2: Flow chart showing specifics of detector and classifier operation

7.2 Summary of system operation

The operation of the detection and classification system is summarized by the flow chart in Figure 7.2.

The flow chart shows the entire detection and classification process performed by the system as it

monitors a process. The first row of the flow chart depicts the feature extraction loop. In this loop,

the system waits for system call events to arrive from the process and counts the occurrences of

the system call 3-grams. This process continues until the desired number of system calls lb have

been observed. Next, the feature extraction process is completed using TF-IDF transformation. The

resulting feature vector x̂ is used for detection. From the output Λ of the LR detector, the sequential

decision statistic Λi is computed as the cumulative sum of the LR outputs. If the decision statistic

exceeds the detection threshold λ, the system performs classification using the saved feature vectors

and the LR classifier. The classifiers outputs the malware family to which the malicious process

most likely belongs. Otherwise, the detector re-enters the feature extraction loop and continues

monitoring the process.

Chapter 7: Conclusions 7.2 Summary of system operation

114

7.3 Discussions

Detection

This study sought to address two perceived shortcoming in the literature in behavioral malware

detection. First, it sought to address conflicting claims regarding the effectiveness of proposed

behavioral malware detection techniques. Particularly, it sought to address conflicting claims about

the effectiveness of system call frequencies and sequences as feature sets for malware. Further,

it sought to address conflicting claims regarding the usefulness of signature-based and statistical

detection algorithms. In both cases, these claims were addressed by evaluating the effectiveness of

such techniques against a common dataset. This study explored the feature space in which system

call traces can be represented, providing empirical results to evaluate the discrimination afforded by

each representation.

Second, this study sought to address the apparent lack of a study of behavioral malware detection

performance at very low FPRs. Empirical evaluation of the detectors was performed using a set of 4

million processes and 55,000 malware samples. This study revealed that high detection accuracy was

possible at a FPR as low as 10−5, identifying the set of feature extraction and detection techniques

that could be used to achieve such accuracy.

The method by which the system call traces of malware and benign processes used in this study

were collected is also one of the main contributions of this thesis. Instead of executing malware

in a specialized sandbox environment, malware were executed on live hosts configured to mimic

production environments. Furthermore, the same techniques were used to collect benign process

traces both on the same hosts as the malware and in production environments. This approach was

used to prevent bias in the detection results arising from the use of specialized environments.

The majority of the malware samples in this study were detected in their early stages of execution.

If the techniques described in this thesis were to be widely adopted, the most common form of evasion

used by malware authors would likely be to delay the malicious tasks that lead to positive detections.

To address this concern, this study presented a sequential malware detection procedure adapted from

Page’s CUSUM test. The proposed sequential detection procedure is a continuous inspection scheme

Chapter 7: Conclusions 7.3 Discussions

115

that monitors each process for the duration of its execution. Thus, the test can detect malicious

behaviors regardless of when they occur. This sequential malware detection procedure might also

prove useful in detecting other types of faults and intrusions that do not necessarily occur at the

beginning of a process’s execution.

Classification

For malware classification, the contributions of this study were two-fold. First, it showed that clas-

sification could be achieved using the same set of system call 3-gram features used for malware

detection. This enables classification to be performed immediately after a malware sample is de-

tected, without needing to perform any additional data collection. Furthermore, the computationally

simple algorithms used for classification enable rapid classification, even on low-end hardware. Sec-

ond, it showed that the ground truth labels used for training and testing can have a significant effect

on classification accuracy. Through the study of some 27 ground truth labeling schemes derived from

16 different antivirus (AV) vendors’ labels, the labeling schemes providing the highest classification

accuracy were identified.

Practical considerations

This study considered some of the practical considerations of the deployment of the described system,

including the effects of drift on detection accuracy. In a commercial deployment of this system, it is

expected that the models used for detection and classification would require periodic updates to be

pushed to clients from a centralized server. Figure 7.3 depicts the model update process. Feature

data, decisions, and malware samples collected at the client would be provided as feedback to the

server. The server would use this information to either update the models directly, or perform

additional analyses of the new malware samples. The updated models would be provided by the

server to the client.

Whereas AV software signature databases are typically updated multiple times each day, the

described system would require less frequent updates – on the order of weeks – to maintain its

high accuracy. The cost of updating the models used for detection comes from the processes of

Chapter 7: Conclusions 7.3 Discussions

116

Client Server

Malware detection &
classification system

Perform detailed
malware analyses

Filter
incoming

data

Feature data,
decisions, &
malware samples

Retrain detector and
classifier

(as needed)

Samples requiring
more analysis

Labeled
training
data

Samples requiring
more analysis

Labeled
training
data

Updated models &
configuration

Figure 7.3: Model update feedback loop, showing how model updates are generated and
pushed to the clients using data collected from the clients

obtaining training data and learning the models. The former cost is low because the clients provide

feature data, malware samples, and classification results that can be used to inform the model

update process. This is advantageous because it does not require that new samples be executed

in a laboratory environment. The provided feature data and classification results can also be used

to guide additional analyses. Such analyses include the execution of the malware samples in a

laboratory environment to determine whether the set of monitored features requires any updates.

Such updates are expected to be rare, but may be necessary to accurately detect and classify new

malware families. The updated configuration information would be pushed to the clients along with

the updated models. The latter cost, that of learning the models, is low due to the chosen detection

and classification training algorithm, stochastic gradient descent (SGD). The SGD algorithm is an

efficient algorithm for training linear classifiers that performs well on large numbers of training

samples and on high-dimensional data. Furthermore, SGD supports the successive refinement of

models as additional training instances are added.

Finally, while this study focused on the detection and classification of malware processes, the

techniques, test procedures, and SCS were developed with thread, application, and host-level detec-

tion in mind. Although not presented in this thesis, the described techniques have demonstrated

Chapter 7: Conclusions 7.3 Discussions

117

promising results at the host-level, and preliminary work at the thread-level exhibited comparable

detection performance. The advantage of performing detection at the thread level is the possible

identification of specific malicious threads that execute in the context of an otherwise benign process.

The advantage of performing detection at the application or host level is the possible identification of

malicious behaviors being performed by a collection of threads or processes, such as those performed

in a shadow attack.

Chapter 7: Conclusions 7.3 Discussions

118

Bibliography

[1] D. Plohmann and E. Gerhards-Padilla. Case study of the miner botnet. In 4th International
Conference on Cyber Conflict, CYCON, pages 1–16, 2012.

[2] S. Khattak, N.R. Ramay, K.R. Khan, A.A. Syed, and S.A. Khayam. A taxonomy of botnet
behavior, detection, and defense. IEEE Communications Surveys Tutorials, 16:898–924, 2014.

[3] Alexandre Gazet. Comparative analysis of various ransomware virii. Journal in Computer
Virology, 6(1):77–90, 2010.

[4] Brett Stone-Gross, Ryan Abman, Richard A Kemmerer, Christopher Kruegel, Douglas G
Steigerwald, and Giovanni Vigna. The underground economy of fake antivirus software. In
Economics of Information Security and Privacy III, pages 55–78. Springer, 2013.

[5] Peter Szor. The Art of Computer Virus Research and Defense. Addison Wesley Professional,
2005.

[6] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao, Farnam Jahanian, and Jose
Nazario. Automated classification and analysis of internet malware. In International Sympo-
sium on Recent Advances in Intrusion Detection, RAID, 2007.

[7] Carlos Castillo, Alex Hinchliffe, Chris Miller, Rajesh Nataraj KP, Francois Paget, Eric Pe-
terson, Arun Pradeep, Craig Schmugar, Rick Simon, Dan Sommer, Bing Sun, and Adam
Wosotowsky. Mcafee labs threats report. Technical report, Intel Security, 2015.

[8] Carey Nachenberg. Computer virus-antivirus coevolution. ACM Communications, 40(1):46–
51, 1997.

[9] S. Neuhaus and T. Zimmermann. Security trend analysis with cve topic models. In Interna-
tional Symposium on Software Reliability Engineering, ISSRE, pages 111–120, IEEE, 2010.

[10] Sherly Abraham and InduShobha Chengalur-Smith. An overview of social engineering mal-
ware: Trends, tactics, and implications. Technology in Society, 32(3):183–196, 2010.

[11] A.K. Sood, R. Bansal, and R.J. Enbody. Cybercrime: Dissecting the state of underground
enterprise. IEEE Internet Computing, 17(1):60–68, 2013.

[12] Steve Mansfield-Devine. A patchy response: the dangers of not keeping our systems secure.
Computer Fraud & Security, 2015(1):15–20, 2015.

[13] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security Privacy, 9(3):49–51,
2011.

[14] Beth Binde, Russ McRee, and Terrence J O’Connor. Assessing outbound traffic to uncover
advanced persistent threat. Technical report, SANS Institute, 2011.

[15] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi, and L. Wang.
On the analysis of the zeus botnet crimeware toolkit. In Annual International Conference on
Privacy Security and Trust, PST, pages 31–38, 2010.

[16] Aditya K. Sood and Richard J. Enbody. Crimeware-as-a-service: A survey of commoditized
crimeware in the underground market. International Journal of Critical Infrastructure Pro-
tection, 6(1):28–38, 2013.

119

[17] Brett Stone-Gross, Thorsten Holz, Gianluca Stringhini, and Giovanni Vigna. The underground
economy of spam: A botmaster’s perspective of coordinating large-scale spam campaigns. In
USENIX Workshop on Large-Scale Exploits and Emergent Threats, LEET, 2011.

[18] Kregg Aytes and Terry Connolly. Computer security and risky computing practices: A rational
choice perspective. Journal of Organizational and End User Computing, 16(3):22–40, 2004.

[19] Adam M Bossler and Thomas J Holt. On-line activities, guardianship, and malware infection:
an examination of routine activities theory. International Journal of Cyber Criminology, 3(1):
400–420, 2009.

[20] Chris J. Mitchell, editor. Trusted Computing. The Institution of Engineering and Technology,
2005.

[21] Cyrus Peikari and Anton Chuvakin. Security Warrior. O’Reilly, 2004.

[22] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection using sequences
of system calls. Journal of Computer Security, 6(3):151–180, 1998.

[23] Martin Roesch. Snort - lightweight intrusion detection for networks. In Conference on system
administration, LISA, pages 229–238, USENIX Association, 1999.

[24] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and E. Vazquez. Anomaly-based
network intrusion detection: Techniques, systems and challenges. Computers & Security, 28:
18–28, 2009.

[25] A.G. Tartakovsky, B.L. Rozovskii, R.B. Blazek, and Hongjoong Kim. A novel approach to
detection of intrusions in computer networks via adaptive sequential and batch-sequential
change-point detection methods. IEEE Transactions on Signal Processing, 54(9):3372–3382,
2006.

[26] Matthias Neugschwandtner, Paolo Milani Comparetti, Gregoire Jacob, and Christopher
Kruegel. Forecast: skimming off the malware cream. In Annual Computer Security Appli-
cations Conference, ACSAC, pages 11–20, ACM, 2011.

[27] Gregoire Jacob, Herve Debar, and Eric Filiol. Behavioral detection of malware: from a survey
towards an established taxonomy. Journal in Computer Virology, 4:251–266, 2008.

[28] Mihai Christodorescu and Somesh Jha. Testing malware detectors. SIGSOFT Software Engi-
neering Notes, 29:34–44, 2004.

[29] O. Sukwong, H. Kim, and J. Hoe. An empirical study of commercial antivirus software effec-
tiveness. Computer, PP(99):1, 2010.

[30] Michael Venable, Andrew Walenstein, Matthew Hayes, Christopher Thompson, and Arun
Lakhotia. Vilo: a shield in the malware variation battle. In Virus Bulletin, 2007.

[31] Bill Pollak. Ultra-Large-Scale Systems: The Software Challenge of the Future. Software Engi-
neering Institute, Carnegie Mellon, 2006.

[32] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM Trans-
actions on Information System Security, 3:186–205, 2000.

[33] Details about the discovered false alarms, appendix to the anti-vius comarative, september
2014. Technical report, AV Comparatives, 2014.

[34] D. Gao, M.K. Reiter, and D. Song. Beyond output voting: Detecting compromised replicas us-
ing hmm-based behavioral distance. IEEE Transactions on Dependable and Secure Computing,
6(2):96–110, 2009.

Bibliography

120

[35] Weiqin Ma, Pu Duan, Sanmin Liu, Guofei Gu, and Jyh-Charn Liu. Shadow attacks: automat-
ically evading system-call-behavior based malware detection. Journal in Computer Virology,
8(1-2):1–13, 2012.

[36] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection. In Annual
Computer Security Applications Conference, ACSAC, pages 421–430, 2007.

[37] Asia Slowinska and Herbert Bos. Pointless tainting?: evaluating the practicality of pointer
tainting. In European conference on computer systems, EuroSys, pages 61–74, ACM, 2009.

[38] Art Baker and Jerry Lozano. The Windows 2000 Device Driver Book. Prentice Hall, 2nd
edition, 2000.

[39] S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff. A sense of self for unix processes.
In IEEE Security and Privacy, pages 120–128, 1996.

[40] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet dossier. Technical report,
Symantec Corp., 2011.

[41] Boldizsár Bencsáth, Gábor Pék, Levente Buttyán, and Márk Félegyházi. Duqu: Analysis,
detection, and lessons learned. In European Workshop on System Security, EuroSec, ACM,
2012.

[42] Kate Munro. Deconstructing flame: the limitations of traditional defences. Computer Fraud
& Security, 2012(10):8–11, 2012.

[43] Davide Canali, Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai Christodorescu,
and Engin Kirda. A quantitative study of accuracy in system call-based malware detection.
In International Symposium on Software Testing and Analysis, ISSTA, pages 122–132, ACM,
2012.

[44] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey on au-
tomated dynamic malware-analysis techniques and tools. ACM Computing Surveys, 44(2):
6:1–6:42, 2008.

[45] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for malware analysis.
In IEEE Symposium on Security and Privacy, pages 231–245, 2007.

[46] Nwokedi Idika and Aditya P Mathur. A survey of malware detection techniques. Technical
report, Purdue University, 2007.

[47] J. Zico Kolter and Marcus A. Maloof. Learning to detect and classify malicious executables
in the wild. Journal of Machine Learning Research, 7:2721–2744, 2006.

[48] M. Shafiq, Syed Khayam, and Muddassar Farooq. Embedded malware detection using markov
n-grams. In Detection of Intrusions and Malware, & Vulnerability Assessment, volume 5137
of Lecture Notes in Computer Science, pages 88–107. Springer Berlin-Heidelberg, 2008.

[49] M.G. Schultz, E. Eskin, F. Zadok, and S.J. Stolfo. Data mining methods for detection of new
malicious executables. In IEEE Symposium on Security and Privacy, pages 38–49, 2001.

[50] Yanfang Ye, Tao Li, Qingshan Jiang, and Youyu Wang. Cimds: Adapting postprocessing
techniques of associative classification for malware detection. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 40(3):298–307, 2010.

[51] Mamoun Alazab, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab. Zero-day mal-
ware detection based on supervised learning algorithms of api call signatures. In Australasian
Data Mining Conference, AusDM, pages 171–182, Australian Computer Society, Inc., 2011.

Bibliography

121

[52] Eitan Menahem, Asaf Shabtai, and Adi Levhar. Poster: Detecting malware through temporal
function-based features. In SIGSAC Conference on Computer & Communications Security,
CCS, pages 1379–1382, ACM, 2013.

[53] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, and Randal E. Bryant.
Semantics-aware malware detection. IEEE Symposium on Security and Privacy, 0:32–46,
2005.

[54] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. Mining specifications of ma-
licious behavior. In joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on the foundations of software engineering, ESEC-FSE, pages
5–14, ACM, 2007.

[55] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. Proactive detection of computer
worms using model checking. IEEE Transactions on Dependable and Secure Computing, 7(4):
424–438, 2010.

[56] Engin Kirda, Christopher Kruegel, Greg Banks, Giovanni Vigna, and Richard A. Kemmerer.
Behavior-based spyware detection. In Security Symposium, USENIX Association, 2006.

[57] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Detecting self-mutating malware
using control-flow graph matching. In Detection of Intrusions and Malware & Vulnerability
Assessment, volume 4064 of Lecture Notes in Computer Science, pages 129–143. Springer
Berlin-Heidelberg, 2006.

[58] Qinghua Zhang and D.S. Reeves. Metaaware: Identifying metamorphic malware. In Annual
Computer Security Applications Conference, pages 411–420, 2007.

[59] S. Alam, R.N. Horspool, and I. Traore. Mard: A framework for metamorphic malware analysis
and real-time detection. In International Conference on Advanced Information Networking and
Applications, AINA, pages 480–489, IEEE, 2014.

[60] Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya Debray. A semantics-based
approach to malware detection. ACM Transactions on Programming Languages and Systems,
30(5):1–54, 2008.

[61] L. Martignoni, M. Christodorescu, and S. Jha. Omniunpack: Fast, generic, and safe unpacking
of malware. pages 431–441, 2007.

[62] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda. Panorama:
capturing system-wide information flow for malware detection and analysis. In Conference on
computer and communications security, CCS, pages 116–127, ACM, 2007.

[63] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Song. Dynamic spy-
ware analysis. In Annual Technical Conference, pages 18:1–18:14, USENIX Association, 2007.

[64] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P.
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smartphones. ACM Transactions on
Computer Systems, 32(2):5:1–5:29, 2014.

[65] Lorenzo Martignoni, Elizabeth Stinson, Matt Fredrikson, Somesh Jha, and John C. Mitchell. A
layered architecture for detecting malicious behaviors. In International Symposium on Recent
Advances in Intrusion Detection, RAID, pages 78–97, Springer-Verlag, 2008.

[66] Elizabeth Stinson and John C. Mitchell. Characterizing bots’ remote control behavior. In
International Conference on Detection of Intrusions and Malware & Vulnerability Assessment,
DIMVA, pages 89–108, Springer-Verlag, 2007.

Bibliography

122

[67] Golam Sarwar, Olivier Mehani, Roksana Boreli, and Mohamed Ali Kaafar. On the effectiveness
of dynamic taint analysis for protecting against private information leaks on android-based
devices. In SECRYPT, pages 461–468, 2013.

[68] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman, Simha Sethu-
madhavan, and Salvatore Stolfo. On the feasibility of online malware detection with perfor-
mance counters. SIGARCH Computer Architecture News, 41(3):559–570, 2013.

[69] M.B. Bahador, M. Abadi, and A. Tajoddin. Hpcmalhunter: Behavioral malware detection us-
ing hardware performance counters and singular value decomposition. In International eCon-
ference on Computer and Knowledge Engineering, pages 703–708, 2014.

[70] Robert Moskovitch, Yuval Elovici, and Lior Rokach. Detection of unknown computer worms
based on behavioral classification of the host. Computational Statistics and Data Analysis, 52:
4544–4566, 2008.

[71] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. Andromaly: a be-
havioral malware detection framework for android devices. Journal of Intelligent Information
Systems, pages 1–30, 2011.

[72] Raymond Canzanese, Moshe Kam, and Spiros Mancoridis. Multi-channel change-point mal-
ware detection. In Seventh International Conference on Software Security and Reliability,
SERE, 2013.

[73] Edward Stehle, Kevin Lynch, Maxim Shevertalov, Chris Rorres, and Spiros Mancoridis. On
the use of computational geometry to detect software faults at runtime. In International
conference on autonomic computing, ICAC, pages 109–118, ACM, 2010.

[74] Nong Ye, Xiangyang Li, Qiang Chen, Syed Masum Emran, and Mingming Xu. Probabilis-
tic techniques for intrusion detection based on computer audit data. IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, 31(4):266–274, 2001.

[75] Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai Christodorescu, and Engin
Kirda. Accessminer: using system-centric models for malware protection. In Conference
on Computer and Communications Security, CCS, pages 399–412, ACM, 2010.

[76] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system calls: alter-
native data models. In IEEE Symposium on Security and Privacy, pages 133–145, 1999.

[77] Yihua Liao and V Rao Vemuri. Using text categorization techniques for intrusion detection.
In Security Symposium, volume 12, USENIX Association, 2002.

[78] Dae-Ki Kang, D. Fuller, and V. Honavar. Learning classifiers for misuse and anomaly detection
using a bag of system calls representation. In Annual Information Assurance Workshop, pages
118–125, IEEE/SMC, 2005.

[79] Xin and Xu. Sequential anomaly detection based on temporal-difference learning: Principles,
models and case studies. Applied Soft Computing, 10(3):859–867, 2010.

[80] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: Behavior-based mal-
ware detection system for android. In Workshop on Security and Privacy in Smartphones and
Mobile Devices, SPSM, pages 15–26, ACM, 2011.

[81] A. Tokhtabayev, V. Skormin, and A. Dolgikh. Dynamic, resilient detection of complex ma-
licious functionalities in the system call domain. In Military Communications Conference
(MILCOM), pages 1349–1356, 2010.

[82] B. Mehdi, F. Ahmed, S.A Khayyam, and M. Farooq. Towards a theory of generalizing sys-
tem call representation for in-execution malware detection. In International Conference on
Communications, ICC, pages 1–5, IEEE, 2010.

Bibliography

123

[83] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda, Xiaoyong
Zhou, and XiaoFeng Wang. Effective and efficient malware detection at the end host. In
Security Symposium, SSYM, pages 351–366, USENIX Association, 2009.

[84] Jonas Pfoh, Christian Schneider, and Claudia Eckert. Leveraging string kernels for malware
detection. In Network and System Security, volume 7873 of Lecture Notes in Computer Science,
pages 206–219. Springer Berlin-Heidelberg, 2013.

[85] Han Xiao and Thomas Stibor. A supervised topic transition model for detecting malicious
system call sequences. In workshop on Knowledge discovery, modeling and simulation, pages
23–30, 2011.

[86] Lakshmanan Nataraj, Vinod Yegneswaran, Phillip Porras, and Jian Zhang. A comparative
assessment of malware classification using binary texture analysis and dynamic analysis. In
Workshop on security and artificial intelligence, AISec, pages 21–30, ACM, 2011.

[87] Yang Zhong, H. Yamaki, and H. Takakura. A malware classification method based on similarity
of function structure. In International Symposium on Applications and the Internet, SAINT,
pages 256–261, IEEE/IPSJ, 2012.

[88] Kazuki Iwamoto and Katsumi Wasaki. Malware classification based on extracted api sequences
using static analysis. In Asian Internet Engineeering Conference, AINTEC, pages 31–38, ACM,
2012.

[89] Silvio Cesare, Yang Xiang, and Wanlei Zhou. Malwise: An effective and efficient classification
system for packed and polymorphic malware. IEEE Transactions on Computers, 62(6):1193–
1206, 2013.

[90] Younghee Park, Douglas Reeves, Vikram Mulukutla, and Balaji Sundaravel. Fast malware
classification by automated behavioral graph matching. In Annual Workshop on Cyber Security
and Information Intelligence Research, CSIIRW, pages 45:1–45:4, ACM, 2010.

[91] Younghee Park and Douglas Reeves. Deriving common malware behavior through graph clus-
tering. In Symposium on Information, Computer and Communications Security, ASIACCS,
pages 497–502, ACM, 2011.

[92] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. Ttanalyze: A tool for analyzing malware.
EICAR, 2006.

[93] C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis using
cwsandbox. IEEE Security Privacy, 5(2):32–39, 2007.

[94] J. Hegedus, Yoan Miche, A. Ilin, and A. Lendasse. Methodology for behavioral-based mal-
ware analysis and detection using random projections and k-nearest neighbors classifiers. In
International Conference on Computational Intelligence and Security, CIS, pages 1016–1023,
2011.

[95] I. Firdausi, C. Lim, A. Erwin, and A.S. Nugroho. Analysis of machine learning techniques used
in behavior-based malware detection. In International Conference on Advances in Computing,
Control and Telecommunication Technologies, ACT, pages 201–203, 2010.

[96] M. Apel, C. Bockermann, and M. Meier. Measuring similarity of malware behavior. In
Conference on Local Computer Networks (LCN), pages 891–898, IEEE, 2009.

[97] Saeed Nari and Ali A. Ghorbani. Automated malware classification based on network behavior.
In International Conference on Computing, Networking and Communications (ICNC), pages
642–647, 2013.

Bibliography

124

[98] N. Stakhanova, M. Couture, and A.A. Ghorbani. Exploring network-based malware classifica-
tion. In International Conference on Malicious and Unwanted Software (MALWARE), pages
14–20, 2011.

[99] D. Lobo, P. Watters, and Xinwen Wu. Rbacs: Rootkit behavioral analysis and classification
system. In Third International Conference on Knowledge Discovery and Data Mining, pages
75–80, 2010.

[100] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel Laskov. Learning
and classification of malware behavior. In International Conference on Detection of Intrusions
and Malware, & Vulnerability Assessment, DIMVA, pages 108–125, Springer-Verlag, 2008.

[101] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Automatic analysis of
malware behavior using machine learning. Journal of Computer Security, 2011.

[102] Tony Lee and Jigar J. Mody. Behavioral classification. In European Institute for Computer
Antivirus Research Annual Conference, EICAR, 2006.

[103] Blake Anderson, Curtis Storlie, and Terran Lane. Improving malware classification: bridging
the static/dynamic gap. In Workshop on Security and artificial intelligence, AISec, pages
3–14, ACM, 2012.

[104] Senthilkumar G. Cheetancheri, John Mark Agosta, Denver H. Dash, Karl N. Levitt, Jeff
Rowe, and Eve M. Schooler. A distributed host-based worm detection system. In SIGCOMM
workshop on Large-scale attack defense, LSAD, pages 107–113, ACM, 2006.

[105] Haining Wang, Danlu Zhang, and K.G. Shin. Change-point monitoring for the detection of
dos attacks. IEEE Transactions on Dependable and Secure Computing, 1(4):193–208, 2004.

[106] Alexander G. Tartakovsky, Boris L. Rozovskii, Rudolf B. Blazek, and Hongjoong Kim. De-
tection of intrusions in information systems by sequential change-point methods. Statistical
Methodology, 3(3):252–293, 2006.

[107] George Forman. An extensive empirical study of feature selection metrics for text classification.
Journal of Machine Learning Research, 3:1289–1305, 2003.

[108] William B Cavnar and John M Trenkle. N-gram-based text categorization. Technical report,
Environmental Research Institute of Michigan, 1994.

[109] Alexander Pak and Patrick Paroubek. Twitter as a corpus for sentiment analysis and opinion
mining. In LREC, volume 10, pages 1320–1326, 2010.

[110] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for
cancer classification using support vector machines. Machine learning, 46(1-3):389–422, 2002.

[111] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[112] Mark A. Hall Ian H. Witten, Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, 2011.

[113] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[114] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008.

[115] Ashraf M. Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes. Multinomial naive
bayes for text categorization revisited. In AI 2004: Advances in Artificial Intelligence, volume
3339 of Lecture Notes in Computer Science, pages 488–499. Springer Berlin-Heidelberg, 2005.

Bibliography

125

[116] Harry L. VanTrees. Detection, Estimation, and Modulation Theory. John Wiley and Sons,
2001.

[117] A. Wald. Sequential Analysis. Wiley, New York, 1947.

[118] Pramod K. Varshney. Distributed Detection and Data Fusion. Springer, 1997.

[119] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In International Conference on Machine Learning, ICML, pages 116–, ACM, 2004.

[120] Alexander Genkin, David D Lewis, and David Madigan. Large-scale bayesian logistic regression
for text categorization. Technometrics, 49(3):291–304, 2007.

[121] E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):pp. 100–115, 1954.

[122] Edda Leopold and Jörg Kindermann. Text categorization with support vector machines. how
to represent texts in input space? Machine Learning, 46(1-3):423–444, 2002.

[123] Alex Kantchelian, Sadia Afroz, Ling Huang, Aylin Caliskan Islam, Brad Miller, Michael Carl
Tschantz, Rachel Greenstadt, Anthony D. Joseph, and J. D. Tygar. Approaches to adversarial
drift. In Workshop on Artificial Intelligence and Security, AISec, pages 99–110, ACM, 2013.

[124] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal of Machine
Learning Research, 5:101–141, 2004.

[125] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classification and Re-
gression Trees. Chapman and Hall/CRC, 1984.

[126] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[127] Eui-Hong (Sam) Han and George Karypis. Centroid-based document classification: Analysis
and experimental results. In Principles of Data Mining and Knowledge Discovery, volume
1910 of Lecture Notes in Computer Science, pages 424–431. Springer Berlin-Heidelberg, 2000.

[128] Jean Carletta. Assessing agreement on classification tasks: the kappa statistic. Computational
linguistics, 22(2):249–254, 1996.

Bibliography

126

Vita

Raymond J. Canzanese, Jr. was born in Lewisville, Texas on 4 December 1984. He is a U.S. citizen

and current resident of Philadelphia, Pennsylvania. He attended Drexel University, obtaining his

B.S. in Computer Engineering in 2008 and his Ph.D. in Electrical Engineering in 2015.

Publications

1. Raymond Canzanese, Spiros Mancoridis, and Moshe Kam. Multi-channel Change-Point Mal-

ware Detection. In International Conference on Software Security and Reliability, SERE,

IEEE, 2013.

2. Raymond Canzanese, Moshe Kam, and Spiros Mancoridis. Toward an Automatic, Online

Behavioral Malware Classification System. In International Conference on Self-Adaptive and

Self-Organizing Systems, SASO, IEEE, 2013.

3. Raymond Canzanese, Moshe Kam, and Spiros Mancoridis. Inoculation against malware infec-

tion using kernel-level software sensors. In International Conference on Autonomic Computing,

ICAC, ACM, 2011.

	Front Matter
	Title Page
	Copyright Page
	Dedications
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Abstract
	Introduction
	Malware
	Malware naming
	Malware delivery mechanisms
	Malware motivations
	Malware defenses
	Recent malware trends

	Behavioral malware analysis
	System call tracing
	Detecting and classifying unknown malware samples
	The importance of empirical evaluation
	Research contributions and thesis outline

	Related Work
	Malware detection
	Static analysis techniques
	Dynamic analysis techniques
	System call analysis

	Malware classification
	Static analysis techniques
	Dynamic analysis techniques

	Novelty of this thesis
	Addressing conflicting claims
	Detector performance at low FPR
	Online detection
	Sequential detection
	Experimental evaluation
	Online classification

	Experimental Setup
	SCS
	Memory and computational overhead

	Production data collection
	Malware testbed
	Malware collector
	Controller and virtual machine hosts
	Network simulator

	Malware samples
	Ground truth labeling
	Conclusions

	Feature Extraction
	Information retrieval
	Feature selection
	Feature scaling
	TFIDF transformation
	Unit-magnitude scaling

	Feature reduction
	Truncated singular value decomposition (SVD)
	LDA

	Feature extraction evaluation

	Malicious Process Detection
	Malware detection algorithms
	Signature-based detector
	Multinomial log-likelihood ratio test (LLRT)
	Linear support vector machines (SVMs)
	LR

	Sequential malware detection
	Wald's SPRT
	Page's CUSUM test

	Malware detector evaluation
	Detector performance measures
	Cross-validation

	Experimental results
	Detector, n-gram length, and trace length comparison
	Feature extraction comparison
	Feature selection
	Regularization
	Block-wise detection performance
	Effects of drift
	Error analysis
	Malware comparison

	Case study
	Sequential detection results
	Conclusions

	Malware Classification
	Malware classification algorithms
	Multi-class logistic regression (LR)
	Naïve Bayes
	Random forests
	Nearest neighbors
	Nearest centroid

	Malware classifier evaluation
	Precision
	Recall
	F1 score
	Cohen's statistic

	Experimental classification results
	Ground truth comparison
	Classifier comparison
	Category-level classification results
	Family-level classification results
	Feature selection

	Conclusions

	Conclusions
	System design
	Summary of system operation
	Discussions

	Back Matter
	Bibliography
	Vita

