
System Call-based Detection of Malicious Processes
Raymond Canzanese∗ and Spiros Mancoridis†
∗Dept. of Electrical and Computer Engineering
†College of Computing and Informatics

Drexel University, Philadelphia, PA, USA
{rcanzanese,mancors}@drexel.edu

Moshe Kam
Newark College of Engineering

New Jersey Institute of Technology
Newark, NJ, USA

kam@njit.edu

Abstract—System call analysis is a behavioral malware de-
tection technique that is popular due to its promising detection
results and ease of implementation. This study describes a system
that uses system call analysis to detect malware that evade
traditional defenses. The system monitors executing processes
to identify compromised hosts in production environments. Ex-
perimental results compare the effectiveness of multiple feature
extraction strategies and detectors based on their detection accu-
racy at low false positive rates. Logistic regression and support
vector machines consistently outperform log-likelihood ratio and
signature detectors as processing and detection methods. A
feature selection study indicates that a relatively small set of
system call 3-grams provide detection accuracy comparable to
that of more complex models. A case study indicates that the
detection system performs well against a variety of malware
samples, benign workloads, and host configurations.

I. INTRODUCTION

Behavioral analysis techniques use characteristics of exe-
cuting software to identify potential malware [1]. One such
technique is system call analysis, wherein malicious behaviors
are identified by their system call traces [2]. System calls are
requests for operating system services, such as memory and
filesystem access. This study describes a malware detection
system that uses system call analysis to detect malware that
evade traditional defenses. Such malware include zero-day
malware and malware variants. The system is intended to
supplement existing defenses such as antivirus software by
identifying compromised hosts. The specific configuration of
the system is determined through experimental evaluation
of multiple feature extraction and detection strategies. Only
system call analysis techniques that are ‘lightweight’ enough
to be used for real-time detection in production environments
are considered. This study evaluates the detection performance
of the system against system call traces collected from recently
discovered malware and benign software executed in produc-
tion environments. More than 55,000 malware samples and
3.5 million system call traces collected from hosts running
Microsoft Windows 7, 8, Server 2008, and Server 2012 are
used for the experimental evaluation.

The main contribution of this study is the evaluation and
comparison of detection and feature extraction techniques at a
low false positive rate (FPR) of 10−5. This study demonstrates
that logistic regression (LR) and support vector machines
(SVMs) trained using stochastic gradient descent (SGD)
provide higher detection accuracy than signature and log-

likelihood ratio test (LLRT) detectors. A logarithmic bag-of-
3-grams feature extraction strategy provides higher detection
accuracy than considered alternatives. The detection system
generalizes well to detect previously unseen malware samples
under various host configurations and benign workloads. A
feature selection study is also presented, wherein the most
informative system call patterns are identified.

II. RELATED WORK

Behavioral malware detectors are used to address the short-
comings of traditional detectors, especially those based solely
on static analysis. Static analysis techniques have enjoyed
limited success due to the relative ease with which static
features can be obfuscated [3]. Behavioral techniques include
audit and performance monitor data analysis, taint analysis,
semantic analysis, and control flow graph analysis [4]–[11].
Malware detection using system call analysis has been ap-
proached using statistical and signature detectors and feature
extraction techniques from document classification [12]–[17].

This study seeks to address two perceived shortcomings in
the related work. First, this study seeks to address conflicting
claims regarding the effectiveness of feature extraction and
detection techniques. It compares multiple feature extraction
strategies and detection techniques against a single dataset.
Second, this study seeks to characterize detection accuracy
at very low FPRs against realistic datasets. To be practically
useful, a malware detection system must exhibit high-enough
detection accuracy at a low FPR [18]. For the majority of
the related work, few claims regarding detection accuracy
at low FPRs or the general applicability of the proposed
techniques can be made. This is due to the small sample sizes
considered for evaluation and the use of specialized sandbox
environments for malware analysis [6]. Two studies include
extensive experimental evaluation of signature-based detectors,
characterizing detection accuracy at a FPR of 10−2 [19], [20].
This study characterizes detection accuracy at a FPR of 10−5

against system call traces collected from production hosts.

III. SYSTEM CALL TRACES

The system call traces used for this study were collected
from production hosts using a custom host-agent known as the
System Call Service (SCS) 1. The SCS is a service application

1SCS source code: https://github.com/rcanzanese/SystemCallService

NtQueryPerformanceCounter
NtProtectVirtualMemory
NtProtectVirtualMemory
NtQueryInformationProcess
NtProtectVirtualMemory
NtQueryInformationProcess
NtQueryInformationProcess
NtQueryInformationProcess
NtQuerySystemInformation
NtQuerySystemInformation

Fig. 1. Example system call trace of process (truncated to 10 calls)

that logs process-level system call traces in recent versions of
Microsoft Windows. Fig. 1 provides an example trace, showing
the system calls made by a process in the order in which
they occurred. For this study, the SCS recorded up to the first
10,000 calls made by each process. Only traces containing at
least 1,500 system calls were used in this study to ensure fair
comparison of detection results at trace lengths up to 1,500.

A. Feature extraction from system call traces

This study characterizes system call traces using a bag-of-
n-grams model. In document classification, a bag-of-words
model is the representation of a text document as a vector
of word frequencies. Analogously, a bag-of-n-grams model is
the representation of a system call trace as a vector of system
call n-gram frequencies. An n-gram is a length n sequence of
system calls occurring contiguously in a trace, extracted using
a sliding window.

Table I shows two bag-of-2-grams representations of the
system call trace in Fig. 1. The ordered 2-gram representation
considers the local ordering of the calls within the sliding
window, whereas the unordered 2-gram representation ignores
the local ordering. The ‘–’ symbol indicates that a sequence
is a reordering of another, and therefore not considered in the
unordered representation. This study compares the detection
accuracy afforded by both representations.

Each system call trace can be represented as a length m
column vector x containing the frequency of every possible
n-gram. The SCS monitors access to 465 distinct system calls,
making m = O(465n). For a system call trace of length
l, where l � m, x is sparse. In practice, the vectors are
stored in a sparse array format with O(l) storage complexity,
and analysis techniques are selected to take advantage of this
sparsity.

B. Feature scaling

The system call n-gram frequencies used in this study scale
to different orders of magnitude. The feature scaling technique
term frequency – inverse document frequency (TF-IDF) trans-
formation is used to account for these differences in scale.
TF-IDF transformation is an information retrieval technique
used in document classification and intrusion detection [13].
The TF-IDF transformation of a vector x is the element-wise
product of the term frequency (TF), computed directly from
x, and the inverse document frequency (IDF), computed from

TABLE I
2-GRAM, ORDERED (O) AND UNORDERED (U) BAG-OF-2-GRAMS

REPRESENTATION OF TRACE IN FIG. 1

n-gram O U

NtQueryPerformanceCounter, NtProtectVirtualMemory 1 1
NtProtectVirtualMemory, NtProtectVirtualMemory 1 1
NtProtectVirtualMemory, NtQueryInformationProcess 2 3
NtQueryInformationProcess, NtProtectVirtualMemory 1 –
NtQueryInformationProcess, NtQueryInformationProcess 2 2
NtQueryInformationProcess, NtQuerySystemInformation 1 1
NtQuerySystemInformation, NtQuerySystemInformation 1 1

the set X of all training vectors,

TF-IDF(x,X) = TF(x)� IDF(X) . (1)

The TF can be the raw frequency or the logarithmic frequency,
wherein Laplace smoothing is used to account for the sparsity
of x [21],

TF(x) = x or TF(x) = log(x + 1) . (2)

The IDF applies weights to features inversely with their
frequency of occurrence, placing higher emphasis on rare n-
grams. Considering p to be the number of traces in X and
d to be a vector counting the traces in which each n-gram
appears, the IDF is

IDF(X) = log

(
1 + p

1 + d

)
+ 1 . (3)

Laplace smoothing is used to account for the sparsity of the
data, and the result is offset by one to ensure that every n-gram
receives a non-zero weight. After TF-IDF transformation, the
feature vectors are scaled to unit magnitude using either the
L1 or L2 norm. This final step is used to facilitate analysis
using the described detection algorithms.

IV. DETECTION ALGORITHMS

The detection algorithms in this study were selected because
they work well for large-scale learning problems with sparse,
high-dimensional data and many training instances. The algo-
rithms exhibit low computational complexity during detection
and are effective in both document classification and intrusion
detection. They are used in a supervised learning context,
wherein labeled training data are used for model creation. Each
technique includes a training and detection algorithm.

A. Signature-based detector (SIG)

The signature-based detector is desirable due to the sim-
plicity of its training and detection algorithms and its white-
box model. The detector compares the system call trace of
a process to a set of n-grams observed only in malware
processes during training, i.e., the signature set. The signature
set is represented as a binary vector s that indicates which n-
grams belong to the set. During detection, a process is labeled
‘malicious’ if the number of signatures matched by a process
exceeds a threshold,

sTx > Λ . (4)

B. Multinomial log-likelihood ratio test (LLRT)

The naı̈ve multinomial LLRT is a statistical test used in
document classification [22]. It is desirable due to the sim-
plicity of its training and detection algorithms. It models the
distributions of the feature data using a categorical distribution
model and assumes conditional independence of the features.
The probability distributions px|M (x) for the malware data and
px|B(x) for the benign data are estimated from the training
data for each feature x ∈ x. During detection, a process is
labeled ‘malicious’ if∑

x∈x
log

(
px|M (x)

px|B(x)

)
> Λ. (5)

The threshold Λ can be chosen under the Bayes criterion,
based on error costs and prior probabilities; or under the
Neyman-Pearson criterion, by maximizing the true positive
rate (TPR) under a false positive rate (FPR) constraint [23].
This study uses the latter approach, since the prior probabilities
of malware infection are not known a priori.

C. Linear support vector machines (SVMs)

SVMs are advantageous because they do not operate on
the same restrictive assumptions as the LLRT regarding the
distribution and independence of the data. Linear SVMs seek
a hyperplane wTx that optimally separates data points of two
classes. In this study, the parameters w defining the hyperplane
are learned from labeled training data using SGD. SGD is
an optimization algorithm well suited to large-scale learning
problems such as this [24]. The SGD objective function is
given in terms of the feature vectors xi ∈ X and their
corresponding labels yi ∈ {−1, 1}. The objective considers a
regularization constant α that penalizes high model complexity
and loss function L. For soft margin SVMs, L is the hinge
loss,

L(t, y) = max(0, 1− ty) , (6)

and the objective function is

E(w) =
1

p

p∑
i=1

L(yi,w
Txi) + α||w||2 . (7)

During detection, a process is labeled ‘malicious’ if

wTx > Λ . (8)

D. Logistic regression (LR)

LR is desirable because its probability estimates can be used
with sequential detection or data fusion techniques that require
probabilities of observations as input. LR provides a model for
estimating the probability that a system call trace comes from
a malicious process [25]. The objective function for training
the LR detector (7) uses logarithmic loss,

L(t, y) = log (1 + exp (−ty)) . (9)

During detection, the probabilities that a process is malicious
or benign are

pM |x(x) =
1

1 + e−(wTx)
(10)

pB|x(x) = 1− pM |x(x) , (11)

and a process is labeled ‘malicious’ if

log

(
pM |x(x)

pB|x(x)

)
> Λ . (12)

V. FEATURE SELECTION

Feature selection is the process of choosing a subset of the
available features to use for detection. The motivation for fea-
ture selection is two-fold. First, the storage and processing of
high-dimensional datasets introduces memory and processing
overhead. Second, including non-informative features during
the training can lead to overfitting. This study uses recursive
feature elimination (RFE) for feature selection [26]. RFE was
chosen because it selects the feature subset that provides
the highest detection accuracy. Furthermore, it works with
detection algorithms that provide feature weights. Thus, RFE
can be used with the LR and SVM detectors. RFE recursively
eliminates features from consideration, re-training the detector
with the remaining feature subset. The eliminated features are
those with the lowest weights computed during training.

VI. EXPERIMENTAL SETUP

The described detectors and feature extraction strategies
were evaluated against more than 3.5 million system call
traces collected by the SCS. The traces were collected from 19
hosts in home and office settings, 15 hosts in public computer
laboratories, and 21 hosts in an isolated testbed. The traces
were collected between October 2014 and June 2015.

The testbed was designed to provide a production-like en-
vironment for the execution of malware. The testbed provided
a variety of host configurations (e.g., different OS versions,
installed software, security patches) to maximize the proba-
bility that the injected malware would perform their malicous
tasks. The hosts were connected to an isolated network routing
traffic to a Stratagem2 honeypot. The honeypot was used to
mimic a vulnerable host, enabling injected malware to perform
network communication. Benign software programs, including
system utilities, games, and desktop publishing software, were
also executed on the testbed to ensure that the detection results
were not biased by the testbed environments.

Ground truth labels were created by cross-referencing
checksums of the executable image of each process against
the VirusTotal database. Executable images not included in
the VirusTotal database were labeled according to their prove-
nance. Those that appeared on the testbed after the execution
of a malware sample were labeled ‘malicious’. Otherwise, they
were labeled ‘benign’.

The malware used in this study were collected from publicly
available malware archives, blacklisted URLs, and honeypots.

2Stratagem, http://sourceforge.net/projects/stratagem

TABLE II
MOST COMMON MALWARE CATEGORIES AND FAMILIES USED IN ANALYSIS

category count
Trojan 16,748
Backdoor 6,744
Virus 4,936
Trojan-Dropper 2,478
Worm 2,020
Trojan-Spy 1,952
Trojan-Downloader 1,462
Email-Worm 1,336
Trojan-PSW 1,042
Trojan-Ransom 953

family count
Trojan.Generic 8,071
Trojan-Spy.Zbot 1,536
Virus.Sality 1,430
Backdoor.DarkKomet 1,205
Email-Worm.Mydoom 1,135
Trojan.Inject 1,101
Trojan.Agent 1,020
Backdoor.Hupigon 980
Virus.Parite 794
Virus.Delf 759

The malware were standalone executable files first submitted
to VirusTotal between January 2012 and June 2015 and
identified as malware by at least 15 antivirus vendors. More
than 55,000 malware samples were executed on the testbed,
with each sample being executed exactly once. The most
common malware categories and families included in the study
(according to their Kaspersky3 labels) are presented in Table II.
The malware samples covered 1,057 distinct malware families
and 36 distinct malware categories.

VII. EXPERIMENTAL RESULTS

The experimental results were obtained through a process
of successive refinement of detector and feature extractor
parameters. The experimental results are presented under the
Neyman-Pearson criterion in terms of the maximum detector
TPR at a fixed FPR of 10−5. The FPR is the fraction of benign
processes incorrectly identified as malware. The TPR is the
fraction of correctly identified malware samples. A malware
sample is considered correctly identified if at least one of
its associated processes is positively identified as malware.
This approach is used to prevent malware samples that spawn
multiple processes from biasing the detection results.

A. Detector comparison

Fig. 2 compares the detection accuracy achieved by each of
the detectors described in Section IV. The plots show the TPR
of each detector at a fixed FPR of 10−5. Each plot shows the
detection results for a fixed n-gram length n while varying the
trace length l. The results were achieved using 10-fold cross-
validation. Since each malware sample was executed only once
on the testbed, these results represent the achievable detection
accuracy against previously unseen malware samples. These
results were obtained using ordered n-grams, logarithmic TF-
IDF transformation, and the L2 norm.

Fig. 2 shows comparatively poor performance for all four
detectors when n = 1, indicating that system call frequency
alone is insufficient for detection. The highest TPR achieved
by a 1-gram detector at an FPR of 10−5 did not exceed
30%. For n ∈ {2, 3, 4}, the LR and SVM detectors offer
significantly improved detection performance over the SIG
and LLRT detectors. The comparatively poor performance
of the SIG detector is caused by overfitting. The signatures

3Kaspersky Lab, http://www.kaspersky.com/

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

n = 1 n = 2

500 1000 1500

trace length l

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

n = 3

500 1000 1500

trace length l

n = 4

LLRT LR SVM SIG

Fig. 2. Maximum TPR at FPR=10−5 at sequence lengths n ∈ {1, 2, 3, 4}
and system call trace lengths l ∈ [250, 1500]

identified during training are mainly artifacts of specific
malware samples that do not generalize to detecting other
malware samples. The comparatively poor performance of
the LLRT detector is attributed to both overfitting and poor
model assumptions, particularly the assumption of conditional
feature independence. The TPR of the LR and SVM detectors
peaks around 1000 system calls for n ∈ {3, 4}, indicating that
the studied malware samples were detected during their early
stages of execution. The observed behaviors of the malware
samples during their initial execution included

• propagating within a host or over the network,
• communicating with a remote server,
• modifying host configurations to hide the malware,
• installing the malware to ensure their permanence,
• spawning additional malware processes,
• collecting information about infected hosts,
• installing additional malware samples, and
• disabling security software and other functions used for

malware removal or detection.

Fig. 3 presents the maximum TPR achieved by each detector
in Fig. 2 at a fixed FPR of 10−5. The TPR of each detector is
shown for n-gram lengths n ∈ {1, 2, 3, 4}. The results indicate
that detection accuracy generally improves as n increases. For
the SVM and LR detectors, increasing n beyond 3 does not
provide statistically significant improvement. This is likely the
result of overfitting, wherein the benefit of the introduction of
additional informative features is offset by those that are not
informative. Furthermore, since the number of features scales
exponentially in n, using the lowest n value that provides
sufficient detection accuracy is desired to minimize system

1 2 3 4

n

0.0

0.2

0.4

0.6

0.8

1.0
T

P
R

LLRT

LR

SVM

SIG

Fig. 3. Maximum TPR observed at FPR = 10−5 for n ∈ {1, 2, 3, 4}

overhead. The remainder of this paper focuses solely on the
LR detector where n=3.

B. Feature extraction

Fig. 4 shows the effects of various feature extraction strate-
gies on the TPR of the LR detector at a FPR of 10−5 using
3-grams of system calls. It compares the detection accuracy
afforded by the 16 combinations of the following 4 parameters,
• (1) L1 or (2) L2 norm,
• (F) raw TF or (L) logarithmic TF,
• (T) TF alone or (I) TF-IDF transformation, and
• (O) ordered or (U) unordered n-grams.

The results were achieved through 10-fold cross validation.
Fig. 4 shows that the L2 norm provides higher detection accu-
racy than the L1 norm. The L1 norm was considered because
of its straightforward interpretation as the relative frequency of
each 3-gram. The comparatively poor performance of the L1

norm is caused by the SGD training algorithm, which performs
better with L2 normalized features. Fig. 4 also shows that log-
arithmic frequencies provide better detection performance than
raw frequencies. This is because the logarithmic frequencies
account for the differing scales of the feature data and place
higher emphasis on rare n-grams. IDF transformation also
emphasizes rare n-grams, but the effect of using IDF alone
is less pronounced. Both of these conclusions are consistent
with those from studies of document classification [27].

The bottom four entries in Fig. 4 illustrate the effects of IDF
transformation and system call ordering. Ordered 3-grams and
IDF transformation outperform their counterparts, and using
both provides a significant increase in performance over using
TF transformation and unordered 3-grams. As a result, the
remaining results consider only the 2LIO feature extraction
configuration.

C. Feature selection

RFE was performed using the LR detector and the 2LIO
feature extraction configuration to identify the subset of or-
dered 3-grams that provided the highest TPR at fixed FPR
of 10−5. The subset that provided the highest TPR contained

0.0 0.2 0.4 0.6 0.8 1.0

TPR

2LTU
2LTO
2LIU
2LIO
2FTU
2FTO
2FIU
2FIO
1LTU
1LTO
1LIU
1LIO
1FTU
1FTO
1FIU
1FIO

Fig. 4. Maximum TPR achieved at FPR=10−5 for the feature extraction
strategies described in Section VII-B

3,500 system call 3-grams. Of the 465 system calls monitored
by the SCS, 244 calls were present in the chosen feature
subset. The most informative 3-grams in the chosen subset
included system calls from the following categories. For each
category, two of the selected calls are listed (with ‘Nt’ prefixes
omitted for brevity).
• Files: LockFile, QueryVolumeInformationFile,
• LPC: CreatePort, RequestWaitReplyPort,
• Memory: AllocateVirtualMemory, OpenSection,
• Misc.: QuerySystemInformation, AllocateUuids,
• Processes: QueryInformationProcess, TerminateProcess,
• Registry: LockRegistryKey, SetInformationKey,
• Security: ImpersonateThread, AdjustGroupsToken,
• Synchronization: CreateKeyedEvent, TraceEvent.

The selected feature set contained system calls from ev-
ery possible category. This result indicates that there are
no simple, intuitive rules for selecting informative n-grams.
Some approaches in the related work have considered only
system call categories that seem intuitively informative, such
as filesystem and registry calls. However, this study indicates
that all categories of system calls are informative and that
feature selection should be performed empirically.

System call diversity is also evident in the selected 3-grams.
For example, the selected 3-gram 〈TerminateThread, CloseOb-
jectAuditAlarm, EnumerateValueKey〉 covers 3 system call
categories, including thread, security, and registry operations.
Other selected 3-grams were more homogeneous, includ-
ing 〈CreateFile,CreateFile,QueryVolumeInformationFile〉 and
a sequence of three successive calls to EnumerateValueKey.

D. Case study

The preceding sections characterized the achievable perfor-
mance of the described detection system using 10-fold cross-
validation. This section instead uses a leave-one-out cross-
validation strategy, wherein the models are trained using all
but one of the hosts and tested against the remaining host.
This strategy tests how well the detection models generalize
to new host configurations, benign workloads, and malware

samples. Here, the models are trained against a subset of the
training data and the thresholds are selected against a disjoint
subset. The thresholds are chosen to achieve a target FPR of
10−5. The resulting models and thresholds are tested against
the system call traces collected from the remaining host.

The leave-one-out cross-validation results provided an over-
all FPR of 3.2× 10−5 and a TPR of 0.92. The false positives
occurred on 13 of the 55 hosts and resulted from 22 appli-
cations. The highest represented applications in this set were
hardware vendor monitoring and update applications, installed
on the hosts as bundled software. Other applications included
a secure erasure utility, a third-party task manager, and 6
applications of unknown provenance that were executed from
temporary directories. The missed detections included sus-
pected adware, spyware, Trojans, and backdoors. Among these
were DarkMoon, Meredrop, Lamechi, SpyBot, and Yuner.

VIII. DISCUSSIONS AND CONCLUSIONS

The goal of this study was to design a behavioral malware
detection system that uses system call analysis to detect
the execution of malicious processes. The proposed system
is intended to supplement existing defenses by identifying
compromised hosts, particularly hosts infected with zero day
malware and malware variants that evade existing defenses.
The specific configuration of the system was determined
through experimental evaluation of multiple feature extraction
and detection strategies against system call traces collected
from production hosts. For feature extraction, the system
uses 3,500 ordered system call 3-grams that are TF-IDF
transformed using logarithmic frequency and scaled using the
L2 norm. For detection, the system uses a LR detector trained
using SGD.

The case study indicated that the detector was able to detect
previously unseen malware samples in new environments and
under a variety of host configurations and benign workloads.
Furthermore, the detector exhibited a high detection rate after
having observed as few as 1,000 system calls, corresponding
to an average execution time of 205 ms. The system detected
the execution of the malware samples during their early stages
of execution, typically when they were covertly installing
themselves and making other host modifications.

ACKNOWLEDGMENTS

Thank you to the KEYSPOT Network, the People’s Emer-
gency Center, the Dornsife Center for Neighborhood Part-
nerships, the City of Philadelphia’s Mayor’s Commission on
Literacy, Office of Innovation and Technology (OIT), and
Department of Parks and Recreation (PPR) for their support
of this research. This research is sponsored by a Secure
and Trustworthy Cyberspace (SaTC) award from the National
Science Foundation (NSF), under grant CNS-1228847.

REFERENCES

[1] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on
automated dynamic malware-analysis techniques and tools,” ACM
Computing Surveys, 2008.

[2] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, “A sense of self
for unix processes,” in IEEE Security and Privacy, 1996.

[3] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for mal-
ware detection,” in Annual Computer Security Applications Conference,
ACSAC, 2007.

[4] N. Ye, X. Li, Q. Chen, S. M. Emran, and M. Xu, “Probabilistic
techniques for intrusion detection based on computer audit data,” IEEE
Trans. Syst., Man, Cybern. A, 2001.

[5] R. Moskovitch, Y. Elovici, and L. Rokach, “Detection of unknown
computer worms based on behavioral classification of the host,”
Computational Statistics and Data Analysis, 2008.

[6] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in IEEE Symposium on Security and Privacy,
2007.

[7] A. Slowinska and H. Bos, “Pointless tainting?: evaluating the
practicality of pointer tainting,” in European conference on computer
systems, EuroSys, 2009.

[8] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
“Semantics-aware malware detection,” IEEE Symposium on Security and
Privacy, 2005.

[9] D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating
malware using control-flow graph matching,” in Detection of Intrusions
and Malware & Vulnerability Assessment, Lecture Notes in Computer
Science, 2006.

[10] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Proactive
detection of computer worms using model checking,” IEEE Trans.
Dependable Secure Comput., 2010.

[11] Q. Zhang and D. Reeves, “Metaaware: Identifying metamorphic mal-
ware,” in Annual Computer Security Applications Conference, 2007.

[12] D.-K. Kang, D. Fuller, and V. Honavar, “Learning classifiers for misuse
and anomaly detection using a bag of system calls representation,” in
Annual Information Assurance Workshop, 2005.

[13] Y. Liao and V. R. Vemuri, “Using text categorization techniques for
intrusion detection.” in USENIX Security Symposium, 2002.

[14] B. Mehdi, F. Ahmed, S. Khayyam, and M. Farooq, “Towards a theory
of generalizing system call representation for in-execution malware
detection,” in International Conference on Communications, ICC, 2010.

[15] J. Pfoh, C. Schneider, and C. Eckert, “Leveraging string kernels for
malware detection,” in Network and System Security, Lecture Notes in
Computer Science, 2013.

[16] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using
system calls: alternative data models,” in IEEE Symposium on Security
and Privacy, 1999.

[17] H. Xiao and T. Stibor, “A supervised topic transition model for detecting
malicious system call sequences,” in workshop on Knowledge discovery,
modeling and simulation, 2011.

[18] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion
detection,” ACM Transactions on Information System Security, 2000.

[19] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“Accessminer: using system-centric models for malware protection,” in
Conference on Computer and Communications Security, CCS, 2010.

[20] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu,
and E. Kirda, “A quantitative study of accuracy in system call-based
malware detection,” in International Symposium on Software Testing
and Analysis, ISSTA, 2012.

[21] M. A. H. Ian H. Witten, Eibe Frank, Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2011.

[22] A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes, “Multinomial
naive bayes for text categorization revisited,” in AI 2004: Advances in
Artificial Intelligence, Lecture Notes in Computer Science, 2005.

[23] H. L. VanTrees, Detection, Estimation, and Modulation Theory. Wiley-
Interscience, 2001.

[24] T. Zhang, “Solving large scale linear prediction problems using
stochastic gradient descent algorithms,” in International Conference on
Machine Learning, ICML, 2004.

[25] A. Genkin, D. D. Lewis, and D. Madigan, “Large-scale bayesian logistic
regression for text categorization,” Technometrics, 2007.

[26] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Machine learning,
2002.

[27] E. Leopold and J. Kindermann, “Text categorization with support vector
machines. how to represent texts in input space?” Machine Learning,
2002.

